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SECOND YEAR PROGRESS REPORT

This report covers technical progress during the second year of the NASA Space Physics

Theory contract "The Structure and Dynamics of the Solar Corona," NAS5-96081, between

NASA and Science Applications International Corporation, and covers the period July 16, 1997 to

June 15, 1998. Under this contract SAIC, the University of Califo_a, Irvine (UCI), and the Jet

Propulsion Laboratory (.IPL), have conducted research into theoretic_ modeling of active regions,

the solar corona, and the inner heliosphere, using the MHD model. During the period covered by

this report we have published 17 articles in the scientific literature. These publications are listed in

Section 4 of this report. In the Appendix we have attached reprints of selected articles.

1. INTRODUCTION

Our program centers around the theoretical modeling of active regions, the solar corona, and

the inner heliosphere, using the MHD model. During the second year, we have placed increasing

emphasis in advancing from qualitative comparisons of our results with observations to

quantitative comparisons. Quantitative comparisons are important because they allow us to deduce

solar parameters that are beyond our theoretical understanding at present (such as coronal heating).

Our long-term goal is to develop a model that can be compared directly to observations with
increasing fidelity.

We have steadily increased the number of our collaborations with other solar physics groups.

These have been largely driven by the success of our global coronal model. To date, we have

compared our models with WIND and Ulysses spacecraft data, IPS measurements, radio

emission, energetic particle events, coronal hole estimates, eclipse and coronagraph images, and a

magnetic reconnection laboratory experiment.

During the second year we have added the capability to follow the real-time evolution of the

solar corona as it responds to changes in the photospheric magnetic field. We have used this

capability to study the evolution of the corona during the rising phase of the new solar cycle (see

Section 2.1.1). We have also made some important theoretical advances in the basic theory of the

initiation of coronal mass ejections (CMEs). We have shown that emerging magnetic flux can be a

very effective mechanism for the destabilization of coronal streamers and active regions (see
Sections 2.2.1 and 2.3.2).

2. ACHIEVEMENTS

In this section we summarize the accomplishments made by our group during the second year

of our Space Physics Theory Program contract. The descriptions are primarily intended to

illustrate our principal results. A full account can be found in the referenced publications.

2.1. Modeling the Large-Scale Structure of the Corona and Inner Heliosphere

We have previously described an improved thermodynamic MHD model (in the First Year

Progress Report) that has considerably extended the realism with which we can model the large-

scale solar corona. In this section we describe the application of this improved model, as well as

our polytropic model, to studies of the structure and dynamics of the solar corona.
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2.1.1. Coronal Evolution in Response to Changes in Photospheric Magnetic Fields

Frequently we use our model to compute steady-state coronal solutions for a given

distribution of photospheric magnetic field (e.g., as supplied by a synoptic map of the radial

magnetic field from observations; see Secs. 2.1.2 and 2.1.3). This approach is limited to the study

of the long-time properties of the solar corona. In reality, even if we neglect large-scale eruptions

like coronal mass ejections, the corona is changing continuously, even during times of solar

minimum, as evidenced by the recent Whole Sun Month campaign and as seen in SOHO

observations. This changing structure is driven by changes in the photospheric magnetic field;

active regions emerge and disperse continuously during the solar cycle. We have extended our

model to incorporate the evolution of the photospheric magnetic field (a boundary condition for our

model), so that we can now follow the evolution of the corona. This has given us the capability to

study the long-term evolution of the corona (see below), the detailed evolution during a time period

of interest (e.g., during Whole Sun Month), as well as the ability to study theoretically the coronal

consequences of the emergence of magnetic flux (see Sec. 2.2.1).

When we seek steady-state solutions (of Eqs. (1)-(9) in the First Year Progress Report), we

set the tangential component of the electric field at the boundary, Eto, to zero. This keeps Bro (the

radial magnetic field at the solar boundary) fixed in time. To make the flux evolve to match

observed changes, it is necessary to specify a non-zero Eto. In general, Eto can be expressed as

V t x _P _ + Vt_, where _ and q_ are arbitrary functions (of 0 and _)and Vt indicates tangential

derivatives (in the 0--4_ plane at r- Rs). The potential _ changes Eto without changing the flux

Bro, and can be used to control the transverse magnetic field (i.e., the shear and the normal electric

current), whereas the potential _ changes the flux. We first consider the case _- 0. In this

case, cVt2tp - OBro/Ot, which can be solved for _ for the flux change specified by OBrolOt.

Therefore, _ is evaluated as new solar magnetic field measurements become available, specifying

the evolution of Eto, which is used as a boundary condition for the MHD equations.

Thus, rather than computing a sequence of steady-state solutions for each set of magnetic

field boundary values, our time-dependent MHD model now represents the actual state of the

corona corresponding to the evolving magnetic field measured on the surface of the Sun.

It is important to note that a fundamental aspect of the state of the solar magnetic field is not

provided by line-of-sight magnetograms. Since line-of-sight magnetograms do not provide

information about the transverse component of the magnetic field, configurations with different

levels of magnetic field twist cannot be distinguished (Miki6 & Linker 1997). A vector

magnetogram is required to uniquely specify the magnetic field (e.g., Miki6 & McClymont 1994).

In general, magnetic twist may change as a result of magnetic flux emergence or shearing flows at

the photosphere. In principle, full-disk vector magnetograms can provide information about the

evolution of the transverse magnetic field.

We have used a sequence of synoptic Kitt Peak observations to study the evolution of the

corona during the period Feb. 1, 1997-Mar. 18, 1998 (15 Carrington rotations). This time

interval covers the beginning of the new solar cycle, as the Sun emerges from solar minimum, with

the appearance of high-latitude active regions. To model the evolution over a time interval of over

a year is computationally prohibitive at present. In order to study the quasi-static evolution of the

corona, we changed the photospheric magnetic field at a rate that was enhanced by approximately



ten times comparedto real time. (This simulationtook ~ 65 hoursof CPU time on a single
processorof theCray-T90supercomputer.A real-timesolutionwouldtakeabout10timeslonger.
It maybepossibleto performareal-timesimulationonceourcodeisportedto amassivelyparallel
computer;seeSec.2.4) This approximationmakesit impossibleto studythedetailedevolutionof
individualevents,thoughit is still meaningfulto studythequasi-staticevolutionof thelarge-scale
structureof the corona. For this simulationwe useda "minimum shear"specification,_- 0,
sincemeasurementsof thetransversefield donotexist.

Figure 1showstheevolutionof thestreamerstructure,thecoronalholeboundaries,andthe
heliosphericcurrentsheetduring this timeperiod. Notetheincreasein complexityof thecoronal
magneticfield astheSunemergesfrom solarminimum. Movies of theevolutionof thecorona

werepresentedat the1998SpringAGU/SPDmeetingin Boston(Tarditi,Linker,& Miki6 1998).
2.1.2. Comparison with Eclipse Observations

We have continued our tradition of using our 3D MHD model to predict the state of the

corona during forthcoming total solar eclipses. (Our eclipse comparisons can be seen on our Web

page, http://iris023.saic.com'8000/corona/modeling.html.) We have recently made a new

prediction for the eclipse of February 26, 1998, observed in the Caribbean. In Figure 2 we

compare our prediction to an observation by HAO.

We are planning to predict the state of the corona during the forthcoming total solar eclipse in

August 1999, which will be seen in Central and Eastern Europe, the Middle-East, and Western

Asia. This prediction will be our most challenging yet, since this eclipse will occur close to solar

maximum, when the structure of the corona will be considerably more complicated than in
previous eclipses that we have simulated.

2.1.3. MHD Modeling for Whole Sun Month

MHD modeling is particularly useful for studying the solar corona and solar wind when a

coordinated set of observations is available, since it can help to synthesize different measurements

into a coherent picture. The Whole Sun Month campaign (WSM; Aug. 10-Sep. 8, 1996) brought

together a wide range of space and ground-based observations during solar minimum. Our 3D

MHD model played a central role in the interpretation of these observations. Comparisons of our

model with WSM observations are described by Linker et al. (1998), Breen et al. (1998), Gibson

et al. (1998), and Posner et al. (1998).

Figure 3 shows a comparison between synoptic images from our model and white-light

observations from the Mauna Loa MK3 coronameter and the LASCO coronagraph aboard SOHO.

The simulated and actual synoptic images show many similar overall features, indicating that the

structure of the streamer belt during WSM has been captured by the MHD model. Both sets of

images show a dark region breaking up the streamer belt near 270 ° longitude; this phenomenon is

associated with the "elephant's trunk," an equatorial extension of the northern polar coronal hole.

The elephant's trunk was perhaps the most conspicuous coronal feature observed during WSM,

and was apparent in several different wavelengths, including SOHO EIT images, NSOKP He

10830 maps, and Yokhoh soft X-rays. It was most visible around August 26-27, 1996. Figure 4

shows tracings of the magnetic field from the MHD model as they would appear on August 27,

1996, with coronal holes (black) and closed-field regions (gray) mapped on the surface of the Sun.
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Figure 1. The changing stI_acmre of the solar corona during the period Feb. 1997-Mar. 1998 (Carnngton rotations
I919-1934), as illustrated by coronal hole maps (longitude vs. latitude, with gray/black indicating closed/open field regions),

field line traces with the radial magnetic field shown on the surface of the Sun, polarization brightness, and the shape of the
heliospheric current sheet. This time period represents the rising phase of the new solar cycle. The photospheric magnetic

field was set as a time-dependent boundary condition on the 3D MHD sinmlation using Kitt Peak synoptic maps.
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Figure 2. Comparison of an MHD prediction of the solar corona with a total solar eclipse observation.
The prediction of the state of the corona was done using a 3D MHD simulation with boundary conditions
on the magnetic field supplied by Kitt Peak observations collected during the period January 18 -
February 12, 1998. The eclipse was visible in the Carribean. The eclipse image is courtesy of the the
High Altitude Observatory, NCAR, Boulder, Colorado, USA. NCAR is sponsored by NSF.



MHD Modeling of the Solar Corona During Whole Sun Month
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Figure 3. Comparison of simulated and actual white light synoptic images. Synoptic images are white light measurements
that have been assembled throughout a rotation into a chart of brightness vs, latitude and longitude. The simulated and actual
images show similar features, including the coronal hole that breaks up the streamer belt near 270 degees.

N

N_f_) Solor 0t_ervato*y

......:,_ .........._,_. . _ __," '_

i

x _i."i.N...... ._(

3D MHD Model (Coronal Holes) NSOKP Coronal Hole Map EIT Fe XII Image EIT Fe XV Image

Figure 4. Comparison of the MHD model with coronal holes seen in disk measurements on August 27, 1.996. The "elephant' s
trunk" coronal hole (extending from the northern pole past the equator)can be seen in both the simulation and the data.
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Figure 5. Magnetic field lines traced back to the Sun Ii'om Ulysses

(green) and WIND (blue), together with the heliospheric current
sheet and Ulysses and WIND trajectories mapped back to 15 R s.

i!!!

North Pole View

Speed [kin/s]

- 700

ili!ililiiii!i?!:i

- 6oo

- 500

_i-

Figure 6. The solar wind speed measured at Ulysses and
WIND mapped back to the Sun. The fast wind (red points)
typically maps to deeper within coronal holes than the slow
wind (blue points).



For comparison, the NSOKP coronal hole boundaries and EIT images are also shown. It is

apparent that the MHD model has captured the elephant's trunk coronal hole, although the

observations show the coronal hole extending to lower latitudes than predicted by the model.

We also investigated the solar origins of features observed by the Ulysses and WIND

spacecraft during WSM. Figure 5 shows tracings of field lines from Ulysses (green) and WIND

(blue), as well as the heliospheric current sheet (HCS) predicted by the MHD model, and the

Ulysses and WIND trajectories in the Sun's rotating frame (mapped to the simulation domain).

The model predicts HCS crossings by WIND (but not by Ulysses) during the WSM time period.

WIND HCS crossings similar to those predicted were in fact observed. Figure 6 shows the

observed solar wind speed, mapped back to its source at the Sun, with red points indicating the

fastest observed speeds and blue the slowest. It is apparent that the slow wind maps back close to

coronal hole boundaries, while the fast wind typically comes from deeper within coronal holes.

This result was also seen during the Ulysses fast latitude scan (reported in the First Year Progress
Report).

2.1.4. Modeling the Solar Wind

We have continued to perform extensive modeling in 2D (axisymmetric) geometry in order to

self-consistently model the solar wind from its origins in the low corona to its expansion into

interplanetary space. Our results show promising matches with genetic in situ observations of the

fast and slow solar wind, as well as the observed properties in the low corona. Full details were

presented at the 1998 Spring AGU/SPD meeting in Boston (Lionello, Linker, & Miki6 1998).

Our improved thermodynamic model significantly advances our capabilities to study the

large-scale corona and inner heliosphere. In the new model, the high and low temperature regions

in the corona are determined self-consistently by the open/closed field topology and the coronal

heating profile. The closed-field regions naturally become hotter due to the insulating effect of

parallel thermal conduction. Our 2D computations have shown that we can obtain the correct

density contrast between coronal holes and streamers. As we move to a 3D model, we will

investigate how the plasma density (through the polarization brightness) compares quantitatively to

Mauna Loa and LASCO data for specific observations, and we will compare the solar wind

parameters predicted by the computation (density, temperature, and velocity) with WIND and
Ulysses data.

2.1.5. Simulated Disk and Coronal Emission Images

Our theory program has focused on the importance of developing diagnostics that are as close

as possible to actual measurements, so that direct comparison between models and observations

can be achieved whenever possible. The improved thermodynamic description in our MHD model

opens up the possibility of modeling disk emission, just as we have previously done for

polarization brightness. For example, as part of our comparisons for the Whole Sun Month

campaign (Sec. 2.1.3), we compared coronal holes observed in EIT with the open-field regions

predicted by the MHD model. While the dark emission features identified as coronal holes are

clearly associated with magnetically open regions on the Sun, the observations do not directly

measure field topology, and at times images in different wavelengths can yield different



interpretationsof thecoronalholeboundary.To makeaquantitativecomparisonbetweencoronal
modelsandcoronalholeobservationsrequiresreproducingtheemissionmeasurementitself.

TheemissionlinesobservedbyEIT arisefrom theexcitationof iron ions,atracespeciesin
thecoronalplasma.Theiron populationin thecoronaisespeciallysensitiveto temperatureandhas
beenmodeledin theCHIANTI package(Dereet al. 1998) that is publicly available. Using the

plasma temperature predicted by our improved MHD model, we can model the EIT emission for

different lines. An example is shown in Figure 7. To generate this image, we used the polytropic

MHD model (since our improved model is not operational in 3D yet), so that the temperature

contrast in the model is not as large as expected. (This is a known deficiency of the polytropic

model. We are merely using the polytropic model here to illustrate the technique.) The contrast

observed in the synthesized emission (from the model) is produced by the contrast in plasma

density (since the emission is proportional to the line-of-sight integral of the square of the electron

density). We expect the agreement between our synthesized emission images and EIT

observations to improve significantly when we incorporate the improved thermodynamics into our

model, since this will allow the important effect of temperature on the iron population to be
included.

2.2. Coronal Mass Ejections

2.2.1. Emerging Flux as a Trigger for CMEs

Recently we have explored the effect of emerging flux on the stability and evolution of helmet

streamers. In an influential paper, Feynman and Martin (1995) observed that CMEs (as deduced

from disappearing filaments on the disk) are closely correlated with newly emerging magnetic flux

in the neighborhood. Our emerging flux capability (described in Section 2.1.1) has allowed us to

study the coronal effects of the emergence of subphotospheric magnetic flux. We have found that

a sheared helmet streamer (i.e., with twisted magnetic field lines) erupts when magnetic flux with

the opposite magnetic polarity emerges near the neutral line. This phenomenon has a threshold:

when the amount of emerged flux is below a critical level, the helmet streamer is stable, and

evolves quasi-statically; when a critical level of emerged flux is exceeded, the helmet streamer

erupts violently, liberating almost all of its free magnetic energy, and ejecting a plasmoid outward

with considerable kinetic energy (i.e., reminiscent of a fast CME). Note that it is necessary for the

helmet streamer to be twisted for the eruption to occur_streamers with no twist do not erupt.

Equilibria below the threshold naturally form a "filament" (or "flux rope") above the neutral

line. We have performed extensive simulations of this effect in 2D axisymmetric geometry (MiNd

& Linker 1998), and we have begun to study the effect in 3D geometry. The (stable) "flux rope"

(when the emerged flux is below the threshold) in 3D geometry is shown in Figure 8. The

eruption in 3D geometry is shown in Figure 9. This is a very promising theoretical model for the

initiation of CMEs by emerging flux.

2.3. Three-Dimensional Active Region Modeling

2.3.1. Interaction of Twisted Coronal Loops

We have also modeled a more complicated situation in which two coronal loops interact

during their emergence. We begin with a fully emerged twisted loop in an equilibrium state. A
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Figure 8. Formation of a stable flux rope
within a sheared helmet streamer by the
emergence of opposite polarity flux near the
neutral line. Helical field lines like those
shown here are believed to support
prominences, which are often observed
beneath streamers.
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Figure 9. Continued emergence of opposite polarity flux leads to the
eruption of the flux rope and helmet streamer (i.e., a coronal mass
election). No flux was emerged on the opposite side of the Sun, so this
part of the streamer remains stable.



second loop, intended to model a rising flux tube emerging from below the photosphere, with

different characteristics and physical orientation, emerges in the neighborhood. We have

investigated several cases for the orientation of the second loop. In Figure 10 we show the

evolution when the second loop emerges at an angle of 15 ° with respect to, and directly under, the

first loop (with both loops having helicity of the same sign). We are continuing to investigate the

details of the evolution and interaction of such loops.

2.3.2. Eruption of an Active Region as a Result of Flux Emergence

In Section 2.2.1 we showed that a twisted large-scale coronal arcade can erupt when flux of

the opposite sign emerges near the neutral line. We have investigated the evolution of an active

region arcade with respect to the same phenomenon, and we find that the arcade can erupt under

similar circumstances. We first create a 3D twisted force-free field with a bipolar magnetic field

distribution (by applying photospheric shear to a potential field), as shown in Fig. 1 l a. We then

emerge magnetic flux in such a way as to reduce the net flux in the active region (i.e., flux with

opposite sign to the existing flux). When the amount of emerged flux is below a threshold, a

stable "filament" is produced in the magnetic field above the neutral line (Fig. 1 Ib). The twisted

field lines in this 3D "filament" may be able to support a dense prominence. (Of course, this is not

a filament in the traditional sense, since the model described here presently uses the zero-beta

equations for simplicity. In the future, a more complete MHD model of this configuration may

prove to be fruitful.) Note that the field line topology has not been prescribed: the formation of the

"filament" is a natural consequence of the self-consistent evolution of the field, and has not been

prescribed in any way. When the amount of emerged flux exceeds a critical threshold, the

configuration erupts upward. We are continuing to study this configuration, which is a very

promising candidate to explain the triggering of flares and possibly the eruption of fdaments.

2.4. Massively Parallel Computing

Our spherical 3D MHD code was originally developed to take full advantage of vector

computers (like the Cray-C90). In recent years, it has become clear that in order to perform more

ambitious calculations (e.g., with increased spatial resolution and to simulate longer physical time

periods), it has become necessary to use massively parallel computers (like the Cray-T3E).

Unfortunately, it is not a trivial task to port an existing code to a massively parallel computer, since

present compilers are not sophisticated enough to efficiently distribute the workload on multiple
CPUs.

To efficiently utilize a massively parallel computer it is necessary to parallelize the algorithm

at a relatively low level. The de facto standards for parallel computing are High Performance

Fortran (HPF) and Message Passing Interface (MPI). In order to decide which system was most

efficient for our code, we parallelized a 3D potential field solver with HPF and MPI. This code is

representative of our 3D MHD code, since both codes utilize a conjugate gradient solver for the

inversion of matrices (where most of the CPU time is spent).

Even though it took less time to implement HPF than MPI, our tests on the Cray-T3E show

that the performance of MPI is superior to that of HPF. Ideally, the execution time (i.e., the

average CPU time spent by each processor) should be inversely proportional to the number of

processors. Overhead associated with communication between processors can cause deviation

10



Interaction of Two

Coronal Loops

Figure 10, The red loop is a twisted pre-existing coronal
loop. The black loop emerges (with twist) underneath it
and interacts with it.
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(black field lines) is formed. The arcade erupts if additional flux is emerged.

11



from this ideal "scaling." Our results show that the scaling for MPI is closer to the ideal than for

HPF. In fact, the CPU time for HPF "saturates" quickly as the number of CPUs is increased, and

is not even able to match the execution time of the Cray-C90. (The CPU time for MPI also begins

to saturate when the number of grid points per processor falls below ~ 300.)

This evaluation has helped us to decide to use MPI to implement the parallel version of our

3D MHD code. Even though implementing MPI is more complicated than implementing HPF,

obtaining optimum efficiency is our most important concern. MPI appears to be the emerging

standard for massively parallel computation, and is available on a wide variety of machines.

2.5. Simulation of the MRX Laboratory Reconnection Experiment

We have begun to apply innovative numerical techniques based on unstructured triangular

grids to solar and astrophysical phenomena. We have successfully simulated a laboratory

experiment that has been designed to study magnetic reconnection, especially as it relates to

astrophysics. This technique is based on adaptive grids in which the mesh resolution is

dynamically refined and coarsened to best represent the evolving solution.

The MRX experiment at the Princeton Plasma Physics Laboratory (Yamada et al. 1997) has

been constructed to systematically investigate the fundamental physics of magnetic reconnection in

a well-controlled laboratory setting. The boundary conditions can be controlled extemally, and the

Lundquist number can be varied by controlling the plasma density and the magnetic field strength.

Magnetic reconnection is induced by the forced merging of two toroidal plasmas. The plasmas are

hot enough to be in an interesting parameter regime (102 < S _< 103), but cold enough to allow

the insertion of diagnostic probes to make detailed internal measurements of the magnetic field and

plasma properties. This experiment, which is funded in part by NASA, can shed light on the

fundamental processes involved in magnetic reconnection.

We have used the nonlinear MHD code TRIM (Schnack, Lottati, Miki6, & Satyanarayana

1998) to carry out direct numerical simulation of the MRX experiment. TRIM solves the time-

dependent resistive MHD equations in axially symmetric geometry (although the plasma dynamics

may be fully three-dimensional). TRIM uses an innovative algorithm based on an unstructured

mesh of triangles. This allows the geometry of MRX to be accurately captured. TRIM also uses

adaptive mesh refinement to dynamically refine and coarsen the mesh in the vicinity of evolving
small scale structures, such as current sheets.

The simulations show that the reconnection rate yas a function of the Lundquist number S

scales as S -_, with a- 0.3, over the range 102 _<S _< 104, implying that the reconnection rate

is faster than the Sweet-Parker rate. We have used dynamically adaptive gridding to enhance the

accuracy of these calculations. Our simulations show that a secondary magnetic island forms

during the reconnection. A similar structure is seen in MRX under certain operating conditions.

The secondary island is not observed in our calculations unless we use the enhanced resolution that

is enabled by the adaptive grid.

12
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immersed in a uniform-pressure plasma still remains an equilibrium.) Since the magnetic

field strength in the Gold-Hoyle equilibrium falls with the radial distance from the axis, the

plasma beta increases with the radius, reaching/_ - 1 at r _ 10a. We have chosen a finite
beta to make the nonlinear evolution correspond more closely to the solar corona, where

the plasma/3 is small, but finite.
Since we expect the twist in the solar corona to be introduced by slow magnetic field

footpoint motions in the photosphere, the appropriate initial state ought to be one in which

the twist is only slightly larger than the critical value for linear instability. There is no

more footpoint shearing at z -- +L/2 and the applied surface flow considered is V = 0 (.see

Eq. (6)), because the time-scale evolution of the configuration (due to the kink) is smaller

than the one for the photospheric flow. We selected a twist of _I, = 3rr in order to produce

a distinguishable linear phase of the instability, while at the same time keeping the excess

twist (i.e., that above the stability threshold) small. In other simulations we have found that

the nature of the nonlinear state does not seem to be sensitively dependent on the excess

twist, as long as it is not too large [26]. The loop length is set by the condition L- _I,a,

giving a loop with aspect ratio L/a = 9.42 in this case. The (radial) Alfv6n time is defined

by "CA--air O, where the Alfv6n speed on the axis is given by v ° - B_:_/4_-_o. A uniform

viscosity is used, corresponding to a viscous dissipation time r_ =- aa/v- 100"CA.

We study the ideal MHD evolution of this equilibrium (with _ -- 0) in order to investigate

whether the nonlinear evolution of the kink instability leads to the formation of current

sheets. When strong gradients develop in the magnetic field during ideal MHD numer-

ical simulations, it may be necessary to introduce plasma resistivity. In the case of the

Gold-Hoyle field, as discussed below and as noted by Baty and Heyvaerts [25], the non-

linear evolution of the kink instability does not introduce current sheets, so that it is not

necessary to introduce resistivity into the calculation. This is in contrast to other equilibria

that we have studied, of which the zero net-current equilibrium is a particular example,

for which we have found that the nonlinear evolution of the kink leads to the formation

of current sheets [26], requiring the introduction of finite resistivity during the later stages

of the calculation. We were thus able to perform the present calculation with the ideal

MHD model. (We note that a small amount of numerical resistivity is introduced during the

calculation by the upwind treatment of the advection, as described in Appendix B.)

We start the calculation at t =0 with the m-0 equilibrium field given by

Eqs. (58)-(60), to which we add a small m = 1 perturbation with an amplitude v _ 3 x

10 .4 v °. (The perturbation was chosen to be the eigenfunction corresponding to the most

unstable linear mode in a periodic cylinder, modified suitably to have zero displacement at

the axial boundaries, as required by line tying. Any small initial perturbation could have

been used without affecting the nonlinear results.) The equations were integrated for 500"CA,

requiring about three CPU hours on the Cray YMP/C-90 at NERSC. This code has also

been implemented on the Cray T3D at CINECA in Bologna.
The initial time step was chosen to be 0.1-CA. The time step remained 0. I'CA during the

linear part of the run, decreasing to 0.05 rA during the initial phase of the nonlinear evolution

as a result of the advective flow limit on the time step (Eq. 19) and increasing back to 0.1 rA

after saturation of the kink toward a new equilibrium. The advantage of using the semi-

implicit scheme is illustrated by the fact that the wave Courant number (i.e., the ratio of the

time step to the time step required by an explicit calculation) remains significantly larger

than 1 during this calculation. Initially, the wave Courant number is 16, and it increases to

30 by the end of the calculation.
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components of A are cou_led_ ,,alf°rmindex_ 1. Weandpreferwritethet°side.h°ldTher]constantside

Notefor thethatsaketheofthreesimplicity. We shall drop thedtemv°r-- from the right-hand

of Eq. (45) just as Si, whose form is easily _educed left-hand equation

for the radial component is

m2 ridri rid_ri "_ A,.;i,j

(__ +Atco____dridZh;j÷ _tco_zj÷zXtc° dzj-_]Yi
Ao;i+l,J

ridri + i _t corn_
ridr i _tco_ Ar;i,j-_ ri

_to)_ Ar;i'j÷l _ dz j-1

i _t corn_ A°;i'ja_J + _tcori Az; i+l,j _ dxtcori Az;i, j

ri

-- 2Xtcori Az;i+ _,j-i 4- 2xtcori Az;i,j-1 _ Sr;i,j"

The equation for 0_component is

rh;idrh; i
r 2. i A Z h ;jh'_ -nu-_ t O) dz_

•dzh. j & _tco-::::-------- + zNtco

__ r_dri
• ,dzh;j

_'_ Ao;i,j rh;ir_ Ao;i+l'Jd• _ _tO)_ri_r i
_tco÷

rh;idrh; i

Ao;i-l,j _tco _- Ao;i,j+l-- dzj
- At_o

rh.idrh;i -_ i _tcomdrh;i Az;i,j - i _tcomdrh;i Az;i,j-1

_ t co _2::--------- A o ;i ,j -1
-- dzj-I

Se;i,j .

- dzh j -- i_tcom I_1
Ar;i-l,j

+ i Atcom _ Ar;i,j
ri

(49)

(50)

Finally, we write the equation for the z_component as
r,dz_ Az;i,j

__ + _tco_:____=+ _tco dri-, ,1
, + _tcom rh;i

ri_ldz j Az;i-1 j _r- zNtc°ri Ar;i'J+l

dri-1ridz_j Az;i+l,J -

_ _tco dri

dxtcori-_ Ar;i _,.J+_ + _tcori-_ Ar;i-_,J- (5_)
_tcori Ar;i,j _ Sz;i,j"

+ i _tcomdrh;i Az;i,j+_ _ i zNtcorndrh;i Az;i,j

Note that in Eq. (50) there are diverging terms when i = 2. We have marked them with a,

b, and c. When m = 0 only the first two are present. They derive from the finite difference

representation of (52)

_---rAo
r _r
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Thus we write

0 if m =/=1Ur"1,j -- -i vo;2, j if m -- 1

--UO;2,jVO;1,j m VO;2,J

Vz;z,j ifm =/=1Vz; 1,j -- --Vz;2, j if m -- 1

V_<:N,.j = Vr;R,j

VO;N,j -- --VO;N-I,j -Jr- 2Vo;R,j

l)z;X,j --- --Vz;X-l,j @ 2Vz;R,j

Vr;i,1 -- --Vr;i,2 -}- 2Vr;i,-L/2

t)O;i,1 = --VO;i,2 -Jr- 2Vo;i,-L/2

Vz;i,1 -- gz;i,-L/2

Vr;i,M = --Vr;i,M-1 if- 2Vr;i,+L/2

VO;i,M -- --t;O;i,M-1 -Jr- 2Vo;i,+L/2

Uz;i,M = Vz;i,+L/2.

ifm -0,2

otherwise

(43)

The first method to implement the boundary conditions, as explained in Subsection 3.1,

can be used. In fact, the coupling of v,. and vo in our scheme does not spoil the self-adjoint

nature of the operator.

3.3. The Induction Equation in Cylindrical Coordinates

Let us consider how to solve the induction equation

10A
=-V x V x A + S, (44)

_10t

where the diffusive "curl-curl" operator is self-adjoint. We are not interested now in the

ideal part of Eq. (1), which is treated separately with the predictor-corrector and merely

adds a source term to the right-hand side of

(1) (1 )dV -+ coAtW x Vx A (n+l) -- dV (1-co)AtW x Wx A (n). (45)
_7 _1

The equation above is the finite-difference and self-adjoint representation of Eq. (44) when
1

S - 0. It can be shown that to have stability for all At it must be g _< co < 1. In the code
1

we choose co = 2, which is also second-order accurate in time. The analytical form of the

curl-curl operator, in cylindrical coordinates and after a Fourier transform in 0, is

m 2 32At m 3 0 2AZ

V x V x A ,.-- -_a,.- Oz----5- -Fi-_-_r(rAo)+ OrO-----_' (46)

0 Ar O 1 O 0 2AO m OAz
V x V x A]0 -- im r Ao - _-t-i ----= (47)

Or r Or r Or OZ 2 r Oz '

1 0 OAr m OAo 1 O OAz m 2
V x V x AI:- ---r---Fi r---F A (48)

r Or Oz r Oz r Or Or -77- z.
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obtain

drh;idzjd_i,j
f)i irh.idrh.i dz J -+- CO1Atm 2

..... rh;i

+ o91At-
ridzj_li,j

dri

ri-1 dz j_l, i-1,j rh;i drh;iOli,.j+ l

-]- COl At + COl At

dri_l dzh;j+l
+ CO_At

rh;idrh;iOti,j )

ridzj_li j ri-ldzj_i-l,j

- col At _' Vz.i+l,j - COlAt
dri dri-1

Vz;i--1 ,j

rh;idrh;iOli,j+l rh;idrh;iOli,j

- o91At Uz;i,j+l -- COl At Vz;i,j-1 -- Sz;i,j. (36)
dzh,j+l dzh,j

Let us consider the boxed line in Eq. (35); it contains ri-1 at denominator which diverges

for i -- 2. The boxed derivatives in Eq. (32) produce that term. Using the results in Ap-

pendix A we can rewrite the representation for m = 1 of the second diverging derivative in

Eq. (32) as

ao v,-.2/r2- Y
.... _- al + O (r 2) -- (37)

2 rh.2 drh;2

Vr;2 -- ao + alrh;2 -Jr- O(r4). (38)

Now Y can be easily found, taking into account that

2rh;2 -- r2 -- drh;2. (39)

The first derivative can be treated in the same way. Hence, the boxed line of Eq. (35) when
i- 2 and m- 1 becomes

5 rh;2) Ur; 1,j.+icol At(o_2,j + &l,j) 2 r2
(40)

When m - 2 we can write

I I  v°lvs- Ors. ---i -Or
VO'2,j -- VO;1,j

-- -i . (41)
dr1

The boxed line of Eq. (35) then becomes

--COl At (O_2,j -nt- _l,j)rh;2
UO;2,j -- UO;1,j

dF1

(42)

For m >_3 the above-cited line equals zero for i- 2. It is quite easy to verify that the

equations for the components of v have been written in a self-adjoint form. Once we have

fixed the boundary conditions we can deliver the equations to the CG solver.

The field v may assume (in principle) arbitrary values V at z - 4- L/2 and r - R, while

for the singular boundary at r- 0 the values are dictated by conditions in Appendix A.
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And, finally, for the z component we obtain

1 3 OVz vz 3 3vz
I_7'. otVV[z - ---rot-- - mZot + --ot--. (33)

r Or Or -/5 Oz 3z

We choose as a natural grid for ot the same as that used for P0. This grid is shown in

Fig. 4. When interpolated values are needed on other grids we put a ^ or a - over the

symbol to indicate respectively interpolation along r or z. We can now write the numerical

representation of Eq. (30). We shall drop the temporal index for brevity. The right-hand

side is indicated with just an S;, but its formula is analogous to the left-hand side, the only

differences being the use of the old values of v and the factor -0)2, instead of COl. The

equation for the v,- component is

ridridzh.j[)i,j + COl At

r?dzh, joti+ l,j

rh.i + l drh.i + l rh;i drh.i

r?dzh;joti j
+ 0)1 At ' -t- O)lAtoti+l,jdzh;j

ridri_i,j -Jr- o91 At

dzj

-- 0)1Atoti,jdzh;j q- 091Atm 2dli'jdridzhj -k- 0)1At_

ri

ri+lridzh; joti+l,j ri-lridzh;joti,j

- o91At Vr;i+l,j -- 0)_ At Vr;i--l,j
rh;i + l drh.i + l rh;i drh;i

ri dri_i,j ri dri_i,j_ 1
O)l At_Vr;i,.j+l -- 0)1 At Vr;i,j-Â

dzj dzj_l

m (rirh,+,)- i0)1 At -_- (oti+l,j -_- Oli,j) l)O;i+l,j
Fh;i+l Fi

m (rirhi)-k- i0)l At--f (oti,j q- oli,j) Vo;i,j -- Sr;i,j.
Fh;i Fi

ridri_i,j-1)-_z j - -_ v ,.;i, j

(34)

The one for the vo component is

rh;idrh;idZh;jPi,j -_- 091 At(1 + m2) drh;idzh;joti'jFh;i

+ 0)_ At
ri d z h; jOl i, j

dFi

ri-ldZh;j_i-l,j rh.idrh.i(_i j rh.idrh.iOli j-1
+0)1At + o)l At ' ' ' + 091At ' ' '

dri-1 dzj dzj_l VO;i,j

ri d z h;j_i, j ri_ l dz h. joli,j
-- 0)1 At VO;i+l,j -- 091 At l)O;i-1,.j -- 0)1 At

dri dri-1

rh.idrh.iOi,j

dzj
VO.i,j+l

rh;idrh;i(gi,j-1

-- 091 At l)O.i,.j_ 1

dzj_l
m (+ i0)lAt-_(oti,j -+- _i-l,j) ri_!

Fh;i
Fh;i )
---- Vr;i-l,j

Fi- 1

m- i0)_ At-_(oti,j + 6_i,j) i Fh;i I
--" Ur;i,j -- So;i,j. (35)
Fi

Note that when m > 0 the equations for v,. and vo are coupled. For the v_ component we
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3. Get (M. _(b))i , i = 2, N- 1. The only nonzero components are (M. _I/(b))2 =

A//+;1F0 and (M. ff_(h))N_l = .A//+;NFL.

4. Find boundary contributions to the right-hand side of (27), Si = Si - (M. _(b))i, i =

2, N-1.

During the main iteration loop we calculate the "homogeneous part" of the solution, setting

)2 = 0. At each iteration of the CG solver the matrix-vector product (M • ff_)i is evaluated

in two steps:

1. Set the boundary points on _. Since ?2 = 0, _1 = -C01I/2, and lit N = --CL II/N-1.

2. Get (M. _)i, i = 2, N- 1.

After the CG algorithm iterations, when the solution _I) i is retrieved, its values for i = 1

and i = N are easily deduced from Eq. (28).

3.2. Viscosity Equation in Cylindrical Coordinates

In order to solve Eq. (4) the viscosity and semi-implicit operators must be inverted. If we

write the finite difference equivalents of Eqs. (16)-(! 7) as we have the numerical counterpart

for the one-dimensional model in Eq. (24), we obtain matrices that are no longer self-adjoint

as the analytical operators and require a slow algorithm for their inversion. However, it

is possible to implement a general numerical scheme for inverting both operators. We

shall represent them as symmetric and positive-definite matrices, using Subsection 3.1 as a

guideline. We write

(p dV - Ateel dVV. aV)v {n+l) = [/9 dV + Atee2 dVV. a_7']v {n). (30)

For the viscosity operator a is vp (we write p instead of P0 to avoid subscript overloading).

Since we use a fully implicit advancement to ensure an efficient damping of the small

unresolved scales, we take eel = 1and ee2 -- 0. For the semi-implicit algorithm a = C 2Atp0

and eel = 1,092 = -- 1. Note that it is necessary to multiply both sides of the equation by the

element of volume dV in order to obtain a self-adjoint matrix. This enables us to use the

CG algorithm. The differential operator dVV. aV' must be represented in a discrete form

without spoiling the symmetry of the matrix. Thus, we first write this operator in cylindrical

coordinates in the following form: for the r component it is

V" O_VV r Or r Or Or r r 2 Ur + T -_r r 7 --_r ( r Ogv O )

(31)

For the 0 component it is

1 3 3vo
V-aVVlo = ---ra-- -

r Or Or (1 + mZ)aT_ _ _

o_a 0-r-r r

\

a O \ O Ovo

- 7_--_v'_}) + --a--Or" " Oz Oz
(32)
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Note that in this form the matrix M is explicitly symmetric• Here we have dropped the

temporal index and have indicated the known term just with Si. In computing (M. _I')i

(where _I'i is either the guess solution or a temporary vector used by the CG algorithm), the

index i may vary only in the range 2 _< i _ N - 1. When we know how to fix the proper

boundary conditions, without spoiling the self-adjoint nature of the operator, we shall be

able to apply the CG algorithm.

Boundary conditions are generally Dirichlet conditions (values specified at boundary

points) or Neumann conditions (normal gradients at the boundaries). But even a combination

of both is possible if we write them as

tI/1 -4- C0tI/2 -- ])0 for x -- 0, (28)
_ N -Jr- C L _t_ N -1 -- "_)L forx- L.

Where VO,L and CO,L are constants whose values determine whether Dirichlet (C = 0) or

Neumann (C = -1) conditions apply. A proof that the matrix M is positive definite, with

constrains as in Eq. (28), is given in Appendix C.

The way we implement the boundary conditions in our algorithm depends on how we in-

tend to calculate the matrix-vector product at each iteration. We shall examine two methods:

the first one modifies the matrix itself, the second one modifies the vector _i.

To implement the first scheme we store the main diagonal .Ado;/and one offset diagonal

.A4+;i of the matrix. The diagonal values and the right-hand side Si must be modified

according to Eq. (28) when i = 2 and when i = N - 1 as

J_0;2 "-- J_0;2 -- C0J_+;1,

82 = $2 - "_0.,_+;1;

-/_O;N-1 -- ./_0;N-1 -- CL./_+;N,

SN-1 = SN-1 -- ]2LM+;N. (29)

For 3 < i < N - 2, Si -- Si, and J_0;i -- .Ado;/. Now only values of lI; i with 2 < i _< N - 1

enter into the calculation of M. • and M is a symmetric positive definite matrix. After the

CG algorithm iterations, when we have found the solution (I)i for the internal points, we set

_I'1 and (I) u according to Eq. (28).

However, the previous method might not work when we deal with 2D or 3D problems and

more complicated operators such as "curl-curl." Then it is possible that boundary conditions

couple two different components of a vector field. In those cases, when we cannot write the

modified diagonals for the self-adjoint matrix as in (29), we rely on the following method

that has the advantage that we do not need to explicitly write the diagonals.

We have implemented a subroutine to set the boundary points of the vector _ according

to Eq. (28). Another subroutine calculates (M • _)i, receiving an N component vector in

input and yielding an N - 2 component vector in output. We split the calculation of the

solution of Eq. (27) into two parts. First, we calculate the "inhomogeneous part," fixing

the boundary condition for the right-hand side. We take finite ]2 terms and use _I,(b) as a

work-array. The steps we perform are:

1. Set _I'(b) - 0.

• -.-(b)2. Set the boundary points on _(b) Since internal points are all zero we obtain _ _ - ]2o
and _I_ (b)

:':N -- _)L-
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x=0 ._---dx_---* x= L

1 2 N-1

X o X o X o X o X

1 2 N

"_" dx h ;i "--*"

FIG. 7. Mesh used to represent Eq. (22). The physical region is between 0 and L. • lies on the mesh whose

points are marked with x • fl lies on the one indicated with o's. dxi and dxh:i are the distances between neighbor

points for each mesh.

_+1 _ coat

_n+l on+l ff.n+l _,i_.n+ (

/_i i+1- i -- /_i--1 _xi_-- _dx i

dxh;i

/_i _7+1 -_7 O7-_n-1
dx i _ _i--1 dxi_ 1

= _ + (1 - co) At , (24)
dXh.i

where the distance between two mesh points on the half-integer and on integer mesh are

indicated with dxi and dxh;i, respectively. If we write Eq. (24) in matrix form as it stands,

we find that the matrix A is not symmetric. Hence, we cannot apply the CG algorithm

(actually the matrix is tridiagonal, and we might use a fast ad hoc direct solver for such

cases. However it loses this property when we increase the number of dimensions).

We know that for functions that are zero at the boundaries the following equality holds:

/0L /0"LXD_dx -- _D_Xdx. (25)

We can write the numerical representation of Eq. (25) as a product between matrices and

vectors,

X. dxDz • ¢I, - _ • dxDz •X. (26)

Here dx is a diagonal matrix whose elements are dxh.i. With the discretization given by (24),

we find that dxD_ is a self-adjoint matrix. When fl is positive, the matrix is also positive

definite.

Therefore, if we multiply both sides of Eq. (24) by dxh;i, we obtain

(M-_)i _- Mo;i_i + M+;i_i+l + M-;i_i-1 -- Si;

Mo;i - dxh;i + coAt _xi + dxi-1

M+;i = --coAt_;
dxi

M-;i --- M+;i-1.

(27)
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3. SELF-ADJOINT REPRESENTATION OF THE DIFFUSIVE

AND SEMI-IMPLICIT TERMS

The differential operators in the MHD equations have the property of being self-adjoint.

Let us concentrate only on the diffusive terms that appear in Eq. (1) (resistive diffusion

operator) and in Eq. (4) (semi-implicit and viscous). When these equations are advanced in

time implicitly the problem requires solving the algebraic equation

Ax = b, (21)

where A is the coefficient matrix, x is the unknown vector, and b is the known term. In our

case the dimension of the matrix A is 3I J x 31 J at worst, when the equations for the three

vector components are coupled.

We shall show that it is possible to write for all the above-cited operators a matrix A that

is self-adjoint and positive-definite. This preserves an important property of the analytical

equation and has also a desirable numerical advantage; we can apply the conjugate gradient

(CG) algorithm to rapidly compute the solution x, instead of more complicated and general

methods. The theory of the CG method is given in [16], and an application to a problem

similar to ours is in [17]. Briefly, the CG method is an iterative algorithm to find the

solution vector of the linear system (21) through successive approximations. It involves

the matrix A only in the context of matrix-vector multiplication. Differently from other

iterative methods, estimates of the largest and smallest eigenvalues of the iteration matrix

are not needed. However rapid convergence occurs when the ratio between the maximum

and minimum eigenvalues of A (known as the condition number) is small. Since our matrix

is diagonally dominant, we apply diagonal preconditioning and obtain a matrix with a

smaller condition number. The techniques described in this section make the code about 10

times faster than its previous version in [15], which uses the biconjugate gradient method

[17].

3.1. One-Dimensional Model

We present now a discussion about how to implement a self-adjoint representation of a

diffusive operator in one dimension. We consider the following diffusion equation:

at = Ox fi-_x = De_ (22)

x is assumed to vary between 0 and L. We want to solve the equation above numerically.

First we fix two staggered meshes as in Fig. 7. • is defined on the half-integer mesh (marked

with x's), while/3 lies on the integer mesh (marked with o's). The grid points need not be

uniform. A general finite difference method for solving Eq. (22) is

At
= coD/_- C_)n-+-I --_ (1 - co)Dt_- q)n. (23)

Operators and vectors are in bold when we refer to them as a whole; when we consider

their components we write them in normal type. The value of co can be any number between

1 corresponds to a (centered) second-order0 (fully explicit) and 1 (fully implicit), co--_

accurate in At time discretization. We rewrite the previous equation in components as
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V n+l -- V** VVpo+II2_Tv n+l

= n+i/2 " (17)

At P0

We have marked with P's and C's respectively the predictor and corrector steps in the

equations for A, p, p, and v. Quantities marked with a • or a ** index are provisional

values needed in the predictor-corrector schemes and for a fully implicit treatment of the

viscous term in Eq. (17).

The constant C 2 is the semi-implicit coefficient. The semi-implicit method is described in

[ 13]. This method is unconditionally stable with respect to all magneto-acoustic and shear

Alfvdn modes. Hence, accuracy becomes the most relevant consideration in the choice of

the time step. Briefly, the method consists of adding to the original momentum equation (4)

a linear term multiplied by a coefficient proportional to the time step,

1 Ov
--V • C2/kt2poV . (18)

po at

This removes the small time-step restriction originally introduced by the wave term. Invert-

ing the linear operator above is much less complex and requires less computer memory than

using a fully implicit scheme. The advective terms in (1)-(4) are formally only first-order

accurate in At, while the wave-like terms are second-order accurate (centered). The use of

the semi-implicit method for the wave terms leaves only the stability condition

I(kV)ma×Atl < 1, (19)

due to the explicit treatment of advection. The quantity k is the magnitude of the largest

wave vector compatible with the grid size at the point (ri, z j, Ok),

k-
1 2 l 2

(20)

Note the presence of the factor "3" in the expression for ko, due to the dealiasing algorithm

which restricts the largest poloidal mode to M/3.

In order to address the stability limits imposed by the advective terms in Eqs. (1)-(4)

and to give a heuristic justification of Eqs. (19), (20), we present a one-dimensional Von

Neumann stability analysis of the advection part of the algorithm in Appendix B.

A stability analysis of our algorithm indicates that the wave-like terms are stable for any

choice of time step, and the advective terms are stable when Eq. (19) is satisfied. How-

ever, we have recently found that the coupling of the leapfrog advance of the wave-like

terms with a predictor-corrector for the advective terms may introduce numerical insta-

bility. This instability does not develop when there is sufficient viscosity in the algorithm.

The calculations we describe in Section 4 have sufficient viscosity to prevent this numer-

ical instability from occurring. We have analyzed this coupling, and we have devised an

algorithm that does not suffer from this instability [19]. The fully implicit differencing of

diffusive terms in Eqs. (1) and (4) does not introduce any stability limitation in the time

step.
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divergence of a curl and the curl of a gradient vanish identically. The components of B and

J are naturally specified on integer or half-integer meshes according to their definition. The

components of the nonlinear terms in Eqs. (1)-(4) are evaluated on the same grid of the

field components on the left-hand side, using simple averaging where necessary.

Physical boundary conditions for A and v are specified at z -- +L/2 and r = R according

to Eqs. (5)-(6).

Boundary values for p and p are not required to be specified in our formulation, but they

can be evaluated for diagnostic purposes using extrapolation. At r = 0 we apply geomet-

ric boundary conditions as shown in Appendix A. It is not completely straightforward to

implement such boundary conditions, as they tend to spoil the symmetry properties of the

operators we have to invert. See Section 3 for further discussion.

2.2. Temporal Approximation

The right-hand sides of Eqs. (1)-(4) have advective, dissipative, and wave-like terms that

are treated using predictor-corrector, implicit, and semi-implicit methods. We introduce a

leapfrog time discretization for the various fields, defining A (together with p and p) and

V at staggered time intervals. The resulting algorithm is

A* - A n-l/2

At

/3* -- ion-l� 2

At

/on+.!�2 _ ton - 1/2

At

p, _ pn-1/2

At

pn+l/2 _ pn-1/2

At

V* -- V n

At

= Vn × B n-l�2, P (9)

=C xB* C

-r/
V X _7 x A n+l/2

2

_' x _7 x A n-l/2
-_ , (10)

2

= -_7. (pn-1/2vn), P (11)

= -_'. (p*vn), C (12)

= -V. (pn-1/2vn), P (13)

= -V. (p*v _) c

--(?/ -- 1)pn-1/21_7 . Vn, (14)

= --C. VV* C

jn+!/2 x B n+l/2 l_Tp n+l/2
+

pn+ l /2 19n+1/2

I_7 . C2 At2po+l/Zl_7(v** - v n)

+ AtPo+i/2 ' (16)

= -C-Vv n, P (15)
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1 2 I

z = L/2 o o o o o J- 1

o o o

o o o <> 2

z - -L/2o o o <> o 1

r-O r r-R

FIG. 5. Mesh for v:, A:, B,, and J:. The square represents the physical domain in r and z. Mesh points are

indicated with o.

1 2 I-1

z-L�2 J-1

z

z - -L/2 1

r=O r r=R

FIG. 6. Mesh for Bo, v, and r/. The square represents the physical domain in r and z. Mesh points are indicated

with ..
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1 2 I-I

0 0 0 0 J

z- L/2

Z

z - -L/2

o o

o o

o o

o o o o 1

r-0 r r-R

FIG. 3. Mesh for v,., At, B_., and Jr,. The square represents the physical domain in r and z. Mesh points are

indicated with o.

1 2 I

X X X X x J

z-L/2

- -L/Z

X X X

X X X

X X X x 2

x x x x x 1

r=0 r r=R

FIG. 4. Mesh for vo, Ao, Jo, P, and p. The square represents the physical domain in r and z. Mesh points are

indicated with ×.
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The reality of f requires that fm= f'm, where fro* is the complex conjugate of fro. Moreover,

f0 and fm/2+l have zero imaginary parts. We apply (8) to the MHD equations (1)-(4), ob-

taining a set of M nonlinear partial differential equations in the variables (r, z, t) describing

the evolution of the Fourier components of A, v, p, and p.

We evaluate the nonlinear terms in Eqs. (1)-(4) with a fully dealiased pseudospectral

algorithm, as described in [20]. The pseudospectral method consists of computing operations

either in Fourier space or in real space, according to where it is more convenient. Thus

multiplication is performed in real space to avoid convolution, and derivatives in 0 are

evaluated in Fourier space. We use a fast Fourier transform to transform between the two

representations. However, multiplication generates aliasing errors, due to quadratic and

higher nonlinearities. Hence, we truncate the 0-spectrum (dealiasing) and retain only two-

thirds of available Fourier space.

In order to simplify an implicit treatment, we assume that r/and v do not depend on 0.

This choice makes the implicit viscous and resistive operators linear in 0, and, consequently,

poloidal modes decouple in Fourier space.

We choose two staggered meshes for each nonperiodic direction, r and z. Beside being

second-order accurate in calculating derivatives (when uniform meshes are specified), in this

method boundary conditions are specified naturally: for the magnetic field only the normal

component is specified, while the tangential one is computed, and for the electric field the

tangential component is specified, while the normal component is computed. Moreover, the

algorithm has the property that the longitudinal and transverse parts of vectors are effectively

decoupled, so that initially vanishing longitudinal and transverse components will vanish

all the time. A consequence of this is that V • B = 0.

Current sheets may form during the nonlinear phase of instabilities in our simulations.

We therefore allow the mesh points in the radial direction to have nonuniform spacing in

order to have locally enhanced resolution in the proximity of the center of the loop. The

axial mesh is normally (but not necessarily) uniformly spaced. Radial mesh points on the

integer mesh are indicated with (ri, i = 1, I - 1), where rl -- 0 and ri-1 = R. On the half-

integer mesh we write (rh;i, i = 1, I). The relationship between the two set of mesh points

is rh;i = (ri -+-ri-1)/2. We define also the finite increments (drh;i --ri --ri-1, i = 2, I -- 1)

and (dri = rh;i+_ --rh;i, i = 1, I- 1). In the axial direction we define (z j, j = 1, J- 1), with

z_ = -L/2 and zj_l = L/2, with analogous definitions for Zh;j, dzj, and dzh;j. Figures 3,

4, 5, and 6 show how the dependent variables are defined on each mesh.

Derivatives are defined on integer or half-integer meshes according to Table 1. With

these definitions the gradient, divergence, and curl operator can be implemented so that the

TABLE 1

Differential Operators and Their Corresponding

Finite Difference Representations

Operator Integer mesh Half-integer mesh

1 0

r O0

O

Or

O

Oz

m m

i --Ci,j i --Di, j
Fi Fh:i

Ei, j -- Ei_l, j Fi+l,j - Fi, j

drh:i dri

Gi,j - Gi,j-1 Hi,j+l -- Hi,j

dzh:j dzi
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applying the condition at the boundaries z - +L/2,

Ot
= (V x B)_, (5)

v- V, (6)

where the subscript t indicates the tangential component of vectors (the normal component

of A is advanced as in Eq. (1)). Hence boundary conditions are specified only on the

tangential electric field and normal magnetic field. Equations (5)-(6) are also valid at the

radial boundary at r -- R, where a conducting wall is present and V -- 0. The wall is placed

far enough from the plasma not to affect the physics being studied.

In order to translate from nondimensional to physical quantities we have to specify three

normalization variables for length, magnetic field, and density. For example, when modeling

coronal loops, we can set L_o= 108 cm, Bo = 10 G, and po = 10 -_s g cm -s. Then fields and

scalars in Eqs. (1)-(4) can be measured in terms of

Ao - BoLo G cm,

Vo -= Bo (47rpo) -1/2 cm s-_,

Jo = cBo (4rr L o)- _ statamp cm -2 ,

Po = B_(4rr) -1 dyne cm -2,

to =--LoB_(47rpo) _/2 s,

rio =-- (47r)l/Zc-Zp_!/ZBoLo s,

Vo =- BoLo(4rrpo) -1/2 cm 2 s -1.

In terms of this normalization, we have: the Alfv6n velocity VA -- Vo '_' 9 x 109 cm s-1 , the

Alfvdn time rA -- L o/ VA "_ 1 S, the mass scale M -- poL so-- 1 x 109 g, etc.

2.1. Spatial Approximation

We use cylindrical coordinates (r, 0, z), with 0 _<r _< R, 0 < 0 _< 2rr, -L/2 _< z ,_ L/2,

to model large aspect-ratio coronal loops. A sketch of the coordinate system is presented in

Fig. 2. The 0 coordinate is periodic, so we introduce a discrete mesh Oj -- 27r(j - 1)/M,

j -- 1, 2 ..... M, and write any field f as a finite Fourier series,

M/2+l

f (r, Oj, 2) -- Z fm (r, z)e imOj . (7)
m = -M/2+l

It is well known that the discrete Fourier series converges rapidly if the solution is smooth

[18]. Furthermore, time advancement in Fourier space is facilitated because the poloidal

(m) modes for linear operators decouple. Hence, implicit terms, which are present in the

induction and momentum equations and must be inverted, will be represented as distinct

small submatrices (one for each Fourier mode), instead of a single large matrix.

The complex coefficients fm are given by

M

l -irnOj

fm (r, z) -- --_ Z f (r, Oj, z)e . (8)
j=l
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z=L/2

z=O

z=-L/2

photosphere

r=RB _boundary
_

photosphere

FIG. 2. Coordinates and boundark,s for modeling coronal loops. Field lines are anchored in the photosphere
at z = -¢-L/2. The loops in the code are "straightened out," since we ignore the curvature observed in real loops

(see Fig. 1).

The induction equation (1) allows us to select between ideal (r/ = 0) or resistive MHD

(r/ -# 0). An ideal run is possible only in particular conditions, for example, to study the

linear phase of an instability. In general, the grid resolution dictates the minimum values

of r/and v that may be used. For example, for a 64 x 32 x 64 grid, we have found on a

particular problem that they must be at least _ 10 -3, and sometimes --_10 -2, for the solution

to be physically valid.

When we discuss the zero-beta model, in which we assume that p = 0, we specify the

density to be uniform and fixed in time, so that the mass continuity equation (2) is not

solved. Similarly, we do not advance the energy equation (3) in the zero-beta model. Note

that we neglect the influence of viscous and resistive heating, since we use an adiabatic

energy equation. We plan to add the viscous and resistive heating terms, as well as thermal

conduction, in future versions of the code.

The viscosity in the momentum equation (4) is mainly used to damp short-wavelength

modes in the calculation. In this term we have used P0 = 1/(2rr) f pdO, instead of p, to

allow the matrix inversion to proceed mode by mode.

The equations describe the long-wavelength and long time-scale evolution of the corona,

including magneto-acoustic waves, ideal and resistive instabilities, and resistive and viscous

damping. However, particle acceleration and X-ray emission require kinetic models that

are not part of the code.

In a coronal loop, the dense photosphere anchors the footpoints of the magnetic field lines,

so that they are dragged by applied surface flows V. This footpoint shearing is modeled by
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adescriptionoftheimplementationofaconjugategradientalgorithmfortheinversionof
theimplicitspatialoperators;inSection4wedescribeanapplicationofthecode,andin
Section5wesummarizeourconclusions.

2. COMPUTATIONAL MODEL

Coronal loops consist of a hot, tenuous plasma embedded in a strong magnetic field.

A most important feature of the loops is that their ends are firmly anchored in the dense

photosphere. A sketch of a coronal loop is shown in Fig. 1.

The resistive MHD model is appropriate for our study of solar coronal plasmas. The

MHD equations are written in cylindrical coordinates, neglecting for simplicity the curva-

ture effect. Hence, loops in our analysis are "straightened out" as in Fig. 2. This is clearly

an approximation and important effects are neglected in principle. This description is ex-

pected to be appropriate when the aspect ratio (i.e., the ratio between the radial and the

axial length scales) is large. We write the MHD equations in a convenient nondimensional

form as

0A

at

op

ot

Op

ot

Ov

at

= v x B-_V x V xA, (1)

= -V. (pv), (2)

= -V. (pv) - (y - 1)pX7 • v, (s)

J x B Vp _7. vpo_Tv
= -v. Vv -_ t , (4)

p p po

where A is the vector potential of the magnetic field B -- V x A, J - V x B is the current

density, v is the velocity, p the pressure, p the mass density, r/the resistivity, and v the

viscosity.

FIG. 1. A schematic representation of the magnetic field of a loop in the solar corona. Note that all the field
lines are anchored in the photosphere at both ends. In our code we neglect the curvature and the loop appears
"straightened out" (see Fig. 2).
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itsstructureandevolution.Loopsoftenuousmagnetizedplasmaareobservedfrequentlyin
thecorona.Theendsofthesecoronalloopsareanchoredinthedensephotospherebelow,
asituationthathasbeenreferredtoasline tying. The slow motions in the photosphere

drive the footpoints of the loops, which evolve through series of equilibria. Rapid evolution

may occur when an unstable equilibrium is reached, possibly leading to the development

of current sheets, magnetic reconnection, and the release of magnetic energy that may heat

the corona. If such "disruptions" are sufficiently impulsive, they may be identified with

solar flares. Recent observational and theoretical results on flares and coronal heating can

be found in [1-4].

A complete description of these processes requires a three-dimensional model that in-

cludes the slow, long-wavelength evolution prior to disruption, as well as the rapid short-

wavelength evolution in the nonlinear phase. The resistive magnetohydrodynamic (MHD)

model is appropriate to describe much of the physics associated with these phenomena (ex-

cept in places where the gradient scale-length is smaller than the gyroradius and a kinetic

treatment must be adopted). For simplicity we will restrict our attention to geometries that

are best described in a cylindrical coordinate system. When modeling coronal loops, we

will therefore neglect the important effect of loop curvature [5], studying instead straight

flux tubes as an approximation to large-aspect-ratio coronal loops.

Although the linear stability properties of cylindrical flux tubes have been studied ana-

lytically [6-9], a description of the nonlinear evolution requires a computational approach.

Several cylindrical MHD codes, with axially periodic boundary conditions, have been used

to model laboratory plasmas [10-14]. However, we cannot use such codes for our studies

because we need to impose line-tied boundary conditions to properly model coronal loops,

and a new algorithm must be developed for this purpose.

The goal of the present paper is to describe a fast, accurate, and reliable algorithm for the

advancement of the full resistive and viscous MHD equations in cylindrical geometry which

allows for the specification of driving photospheric motions at the magnetic footpoints. The

code is an improved version of the algorithm employed in [15]. Quantities are evaluated on

grids: the azimuthal variation (0) is represented using Fourier series, with pseudospectral

calculation of derivatives; the r and z coordinates are discretized on staggered meshes,

which allows us to define a curl operator whose divergence vanishes identically. A leapfrog

scheme is used for the time advancement of the wave terms. We employ a semi-implicit

operator in the momentum equation, following the method described in [ 13], while treating

advection with a predictor-corrector scheme. The semi-implicit scheme allows us to set the

time step through considerations of accuracy rather than stability of the algorithm and leads

to a substantial saving of CPU time, compared to a fully explicit algorithm.

The resistive and viscous diffusion terms are advanced implicitly. The resulting implicit

equations and the semi-implicit operator are inverted using a preconditioned conjugate

gradient method [ 16,17]. We have attempted to preserve many of the analytical properties

of the MHD equations in the discretized equations. In particular, we have taken special care

to preserve the self-adjointness of spatial difference operators. Since the proper differencing

of a self-adjoint operator results in a symmetric matrix, we are therefore able to use the

efficient methods that exist for inverting symmetric matrices. As an illustration of the

properties of our algorithm, we describe its application to the linear and nonlinear evolution

of a kink instability in a twisted flux tube.

The paper is organized as follows: in Section 2 we describe the MHD equations and the

spatial and temporal approximations employed to advance them in time; Section 3 contains
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We describe a three-dimensional algorithm for the advancement of the resistive

MHD equations in cylindrical geometry with line-tied boundary conditions. This

code has been developed to simulate the behavior of solar coronal plasmas. A finite-

difference discretization is used for the radial and axial coordinates; a pseudospectral

method is used for the azimuthal coordinate. The dependent variables are defined

on finite-difference meshes that are staggered with respect to each other to facili-

tate the application of boundary conditions. The time-advance algorithm features a

semi-implicit leapfrog scheme for the wave terms, a predictor-corrector treatment

of advection, and an implicit advance of the resistive and viscous diffusion terms.

The semi-implicit and implicit operators are inverted using a preconditioned con-

jugate gradient method. Special care is taken in maintaining the self-adjointness of

the discretized operators, so that a fast inversion algorithm applicable to symmet-

ric matrices can be used. By way of illustration, we describe the application of the

code to the linear and nonlinear evolution of a kink instability in a twisted flux

tube. © 1998 Academic Press

Key Words: partial differential equations; initial value and time-dependent initial-

boundary value problems; numerical linear algebra; iterative methods for linear sys-
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1. INTRODUCTION

The solar corona abounds with interesting phenomena of controversial physical interpre-

tation. Although it is not understood why the corona is so hot (around 106 K) and what causes

flares to occur, it is believed that magnetic reconnection plays a crucial role in determining
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In Figs. 8 and 9 we plot the magnetic energy and the kinetic energy in various modes as a

function of time. Initially, the m = 0 mode shows the relaxation of the analytic equilibrium to

the mesh (since it is not a perfect equilibrium of the discretized equations). The m = 1 mode

grows exponentially in time, with a growth rate g ra = 0.022. The higher-m modes show

growth associated with the coupling to the m = 1 mode. Beginning at t _ 200ra, when the

m = 1 mode reaches a significant amplitude, there is a nonlinear interaction during which

the higher-m modes become sizable. This phase corresponds to the observed kinking of

the axis of the flux tube. Eventually, the kink mode appears to saturate, indicating that the

kinked flux tube is settling toward a new equilibrium.

The linear growth rate of the m = 1 mode at • = 3rr is lower than previous estimates

because of the effect of finite beta. For the case with zero beta, the growth rate has been

estimated previously as g rA = 0.034 by Mikid et al. [ 15], g rA = 0.027 by Foote and Craig

[23], and grA =0.037 by Baty and Heyvaerts [25]. Apparently, even though the plasma

beta is small on the axis, the growth rate is changed significantly by the plasma pres-

sure. This is because the magnetic field strength falls far from the axis in this equilib-

rium, so that even a small pressure can affect the kinking motion of the flux tube. Indeed,

when we repeated the calculation with the zero-beta model (i.e., with po = 0 and a con-

stant density), we found the linear growth rate of the m = 1 mode to be g rA = 0.038, in

good agreement with previous zero-beta results. (The growth rate determined by Foote

and Craig is only intended to be a rough approximation for this equilibrium near the

marginal stability point [23].) The finite pressure leads to a reduction of the growth rate,

apparently due to the fact that beta is greater than one at a large radius, as described

above. The finite-beta case is a more realistic representation of the solar corona than the

force-free case (with/3 = 0), in which the flux tube kinking in the weak-field region is not

impeded.

Figures 8 and 9 show that the kinked flux tube appears to settle to a new equilib-

rium state. This state does not appear to have any current sheets; the magnetic field re-

mains smooth and free of discontinuities. In Fig. 10 we show the evolution of the total
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FIG. 8. Magnetic energy in various Fourier modes as a function of time for the nonlinear kink. The energy in
normalized by the factor Eo = BZa3/(8rr).
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FIG. 9. Kinetic energy in various Fourier modes as a function of time for the nonlinear kink. The energy in

normalized by the factor Eo = BZa3/(Src).

magnetic, kinetic, and thermal energies (defined by W - f [B2/8rc] dV, K -- f __t01!)2 dV,

and E = f[p/(z - 1)]dV, respectively). Note that as the flux tube kinks, the magnetic

energy is converted into kinetic energy and, finally, into thermal energy. The kinked flux

tube approaches an equilibrium that has smaller magnetic energy than the initial state.

The large-scale kinking of the flux tube is best illustrated by traces of the magnetic field

lines. In Fig. 11 we show traces at four instants of time. At t = 100rA, during the linear

stage, the kink is barely perceptible in the field line plot. At t = 250rA the kinking pattern

is clearly visible. The traces at t = 400rA and t = 500rA show that the kink is saturating to

a new equilibrium state.
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FIG. 10. The total magnetic, kinetic, and thermal energies (indicated respectively with W, K, and E) as

functions of time for the nonlinear kink. The energy in normalized by the factor Eo -- B_a3/(87r).
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FIG. 11. Field line plots at t -- 100VA,t -- 250TA, t ---400TA, and t -- 500TA. Field lines start from the bottom

of the loop from a circle of radius a. Initially the kink pattern is barely visible, but when the instability saturates

to a new equilibrium (third and fourth panel), the center of the loop has moved outward to about r = 4a.

5. CONCLUSIONS

We have presented a fast and accurate algorithm for the solution of the full resistive and

viscous MHD equations in cylindrical coordinates in the presence of line-tied boundary

conditions. The computer code based on this algorithm has been applied to the study of

solar coronal flux tubes. In particular, the techniques are suited to the simulation of flux

tubes whose footpoints are driven by slow photospheric motions.

The algorithm is implemented using finite differences in two dimensions, with pseu-

dospectral derivatives along the third (periodic) dimension. The use of staggered finite-

difference meshes preserves the solenoidal nature of the magnetic field and leads to a natural

specification of boundary conditions on the tangential electric field and the normal magnetic

field. Time advancement of the wave-like terms is performed with a leapfrog scheme. A

semi-implicit operator is used in the momentum equation to give unconditional stability

to wave-like terms. Advective terms are advanced using a predictor-corrector scheme, and

therefore limit the time step by a Courant condition based on the flow speed. This allows
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us to use significantly larger time steps than those achievable by a fully explicit algorithm.

The viscous and resistive terms are discretized using a fully implicit time advance. The

semi-implicit, viscous, and resistive operators are inverted using a preconditioned conju-

gate gradient method. Special care has been taken to maintain the self-adjointness of the

discretized operators, so that a fast inversion algorithm applicable to symmetric matrices

can be used.

To illustrate the application of the code, we have presented the nonlinear evolution of

the ideal kink instability in the Gold-Hoyle uniform-twist field. Our results show that it

is possible to follow the linear and nonlinear evolution of the kink instability. In the case

of the Gold-Hoyle equilibrium, it appears that the kink instability saturates nonlinearly as

the flux tube evolves to a new kinked equilibrium without the formation of current sheets.

This result is in agreement with the results of Baty and Heyvaerts [25]. In contrast, Craig

and Sneyd [24] concluded that the kink instability in the Gold-Hoyle field causes current

sheets to form, a conclusion that is based on a calculation on a Lagrangian mesh whose

accuracy is impaired when the mesh becomes significantly distorted by the finite-amplitude

kink displacement. The evolution observed here for the Gold-Hoyle equilibrium contrasts

sharply with the nonlinear evolution of the kink mode in a tokamak in which the nonlinear

evolution causes current sheets (i.e., true discontinuities in the magnetic field) to form [27],

a difference that has been attributed to the effect of line tying in the case of the coalescence

instability by Longcope and Strauss [28]. In our case, it was thus possible to study the ideal

MHD evolution. In general, instabilities can introduce current sheets, in which case it is

necessary to study the resistive evolution. Equilibria in which the kink instability creates

current sheets are discussed in [26, 29]. The role of a resonant surface in the formation of

current sheets as a result of the nonlinear evolution of kink instabilities has been addressed

previously [9, 25].

Therefore, the kink instability in the Gold-Hoyle equilibrium is not likely to play an

important role in the solar corona, since it does not appear to cause significant heating or to

lead to impulsive motions. On the other hand, other equilibria, in particular those in which

the nonlinear evolution causes current sheets to form, leading to significant plasma heating,

magnetic reconnection, and particle acceleration, are likely to be of interest in understanding

coronal phenomena. Numerical algorithms and codes such are the one detailed here will be

an important tool in this endeavor.

The code has also been used elsewhere [29, 26] to study the nonlinear evolution of

instabilities in more realistic equilibria that are intended to model coronal loops formed by

the twisting of uniform ambient fields and from the emergence of magnetic flux tubes from

the photosphere. In these cases we have modeled the formation of current sheets, magnetic

reconnection, and fast energy release.

APPENDIX A: FOURIER COEFFICIENTS IN POLAR COORDINATES

Let us consider a scalar function F (x, y). We assume it is regular near the origin and we

expand it in Taylor series

OF

F (x, y ) -- Fo + x -_x

X 2 0 2F
+

o 2 Ox2

y2 02F
+

o 2 Oy2

02F
+xy

o Ox Oy
+.... (62)

0
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Since x - r cos 0 and y - r sin 0, We can rewrite Eq. (62) as

F (x, y )- Fo+r _ -i--_y o +-2 ff-fx + i--_y e-o o

____r211 ( 02F I 02F I 02El I£i 1 ( 02F I 02El Ig _Tx2 0 _ 2i O__x_y o r _ __y2 o 20 __]_ _ __X2 0 _[_ __y2 0

1 ( O2F O2F oef ) ]
+2i-- e -i2° + .... (63)

+-8 _ o Ox Oy o OY2 o

Hence the r n term is a certain combination of exponential functions e imO with -n < m < n

Since e imO may appear only when n > m[ when we calculate the Fourier series of F, we

obtain

OO

Lfl

n=[m[

(64)

Thus we have/>(m) (r) - O (r]m]) for small r.

Let us consider now only one term of the Fourier series a (m) (X, y) -- P (m)(r)e irnO . Notwith-

standing r is always defined to be greater than zero, we notice that in an algebraic point of
view we are allowed to write

r --+-r, (65)

0 --+ 0 + 7r. (66)

In this case x and y do not change and so

F(m)eim° (r) -- _(m) (_r)eimO (_ 1)m. (67)

Let us expand both members of Eq. (67) in Taylor series around r -- 0, obtaining

- (-1) "+'') - o.
n=lml

(68)

This imposes the following condition on the Taylor series terms of the mth Fourier coeffi-

cient of F (x, y),

n+m-2k+ 1c_m)-o k-0, 1,2 ..... (69)

This means that the Taylor series of an even coefficient has only even terms and, vice versa,

if m is odd only odd terms are found.

Let us examine now a vector U = (Ux, Uy), where the vector components Ux(x, y) and

Uy (x, y) are scalar functions with the same properties of F (x, y). The components of U in

polar coordinates are

Ur - Vx cos 0 @ Uy sin O,

Uo - -Ux sin 0 + Uy cos O.

(70)

(71)
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From this follows that the Fourier series coefficients are

/_,!m) __ 21 ( -(m-1)Ux nt- Ux(m+l) __ i -(m-1)Uy -_- iuy(m+l)) ,

/__(rn) 1 (-(m--l) ~(rn+l) (m-l) -4- /__(rn+l))o -- _ iUx -iUx +Uy y •

(72)

(73)

Thus/_m) and 0_ m) are o(Fmin(lm-l[']m+l])). When m is even only odd terms of the Taylor

series are found and vice versa. Note that for r -- 0 and m > 1 the following equality holds"

-(m) fT(m)U,. ---i_o . (74)

In cylindrical coordinates the third component Uz behaves as a scalar function.

APPENDIX B: STABILITY OF PREDICTOR-CORRECTOR

ADVECTION ALGORITHMS

The typical advection equation in one dimension is

of Of
-- -+-v-- -- 0. (75)
Ot Ox

To solve the equation above we employ the predictor-corrector algorithm

At

At

= -vDf n,

= -oevDf* - (1 - c_)vDf _, (76)

where 0 < o_ < 1. For centered differences

Df = f j+' - f j-'
2Ax

(77)

while for upwind differences

f j-f j-1 ifv > 0,
Ax

D f-- fj+l-fj ifv <0.
Ax

(78)

The scheme above is first-order accurate in time. In order to perform a Von Neumann

stability analysis we suppose that a local solution behaves like f(j Ax, &) = z_ exp(ikj Ax)

and we assume for simplicity that v > 0. The amplification factor z(k) must have modulus

less than 1 for stability (see [30] for a more complete discussion of the method). Substituting

f into Eq. (76) we obtain

z-- 1---Q oe Q-1 • (79)zXx -_x

_ f i sin(kAx)Q
1 - cos(kAx) + i sin(kAx)

centered differences

upwind differences.
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The case of centered differences and no predictor-corrector (c_- 0) yields ]z] always greater

than one and is unconditionally unstable. If we introduce upwind differences then we have

Izl < 1 when

At

v_ < 1, (80)
Ax -

the so-called Courant condition. With the predictor-corrector and centered differences we

obtain

> (81)
u2 - \ Ax

for stability. For a fully advanced corrector (oe- 1) we find again the Courant condition.

Using these methods introduces a numerical viscosity term

02f

1)n OX 2 (82)

into Eq. (75), which is useful to damp small unresolved scales. Letus write z -- exp(-iwr At

+ V At) and then find g from Eq. (79), limiting ourselves to the case k ax _ 1. From Eq. (82)

it follows that the numerical viscosity coefficient is vn =-g/k2- With upwind differences

and oe -----0 its value is

v _ 2 1 (83)Ax '

and for oe = 1 and centered differences

v2At
v _ _. (84)

2

The situation in the code is complicated, with respect to this simple example, by the presence
of nonuniform three-dimensional meshes in a non-Cartesian frame of reference. Further-

more, the conditions above are only necessary and not sufficient for stability. Fully advanced

predictor-corrector is used to stabilize advection in the periodic direction 0, since we cannot

upwind 0-derivative. We normally combine this method with upwind differences in r and

z, originating the stability condition showed in Eq. (19) since both must obey the Courant

condition.

APPENDIX C: POSITIVE DEFINITENESS OF A

SYMMETRIC TRIDIAGONAL MATRIX

Let us consider a symmetric tridiagonal matrix A of the form:

C2 -Jr-bl -Jr-b2 + Cobl,
Ai,i -- ci -+- bi-1 + hi,

CN-1 nt- bN-2 -Jr- bN-1 -Jr-CLbN-1,

Ai,i+l -- hi 2 < i < N - 2

Ai,i-! = bi-1 3 < i _ N- 1,

i m 2,

3<i<_N-2,

i=N-1, (85)
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where C i and bi are positive and Co and CL may be either 1 or -1. A matrix A is positive

definite if and only if

x.A-x>0 Vx¢O. (86)

The condition above becomes for our matrix

N-1 N-1

 2(c,+b,+hi,)+ Z ,hi ,
i =2 i =3

N-2

q-- _ xixi+lbi -}-X2blCo-_-A::__lbN-lCL i> O.

i=2

(87)

(88)

We can rewrite it as

N-1 N-2

)2 x2b (1 --_ CO) @ X2_l

i =2 i =2

(89)

that is manifestly true.
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A new finite-volume algorithm for the solution of the time-dependent, nonideal

magnetohydrodynamic (MHD) equations in cylindrical (r, q_, z) geometry is pre-

sented. The boundary geometry is assumed to be axially symmetric, but it can have

arbitrary shape and connectivity in the poloidal (r, z) plane. The dynamics of the

fluid is fully three-dimensional. A two-dimensional, unstructured, adaptive grid of

triangles is used to describe the poloidal geometry. A pseudospectral algorithm with

fast Fourier transforms is used for the periodic toroidal (qS) direction. The grid can be

dynamically refined or coarsened by adding or deleting points to adapt to evolving

fine-scale structures in the solution. The algorithm exactly conserves total mass, mo-

mentum, energy, and magnetic flux, and identically preserves the solenoidal prop-

erties of the magnetic field and the current density. Examples of the application

of the algorithm to two-dimensional hydrodynamic and MHD shocks, the linear

growth of a resistive tearing instability in a tokamak, and the linear growth and

nonlinear saturation of three-dimensional kink instabilities in toroidal geometry are

given. ,'i_1998 Academic Press

1. INTRODUCTION

Over the past two decades, large scale numerical simulation has played an important role

in fusion plasma research. Applications of these techniques to fluid plasma models have

led to an interpretation of sawtooth [1] and fishbone oscillations [2-4] in tokamaks, the

tokamak major disruption [5], the tilting mode in field-reversed configurations [6], and to

a fundamental understanding of the reversed-field pinch dynamo [7]. These calculations
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were generally performed on spatial grids aligned with fixed coordinate directions. As a

result, these calculations were often carried out in generic toroidal or cylindrical geometry.

Many important engineering and theoretical issues are affected by the details of the

geometry. For example, the poloidal plasma shape can greatly influence the linear stability

properties of a fusion plasma, and these linear calculations are now routinely performed with

the actual poloidal plasma geometry accurately represented. This is often accomplished by

employing a coordinate system based on the magnetic field lines, whose geometry is fixed

throughout the calculation. The resulting metric makes the fluid equations quite complicated,

but it allows the coordinate system to naturally fit the plasma shape.

While coordinate systems based on magnetic fields have proven useful in linear calcula-

tions that principally determine eigenvalues and eigenvectors, they have several disadvan-

tages in fully nonlinear simulations because of the dynamical nature of the magnetic field.

Primary among these is the nonuniqueness of the magnetic topology when finite resistivity

is included in the model. These coordinate systems also may become singular at magnetic

separatrices, which are essential features of modem tokamaks.

It is thus desirable for fully nonlinear simulations to employ a spatial representation

that can readily conform to the geometric details of the plasma and its surroundings and

is independent of the magnetic structure. For accuracy, this representation should also be

capable of conforming to the dynamical evolution of short spatial scale structures, such

as current filaments and density gradients that may appear spontaneously and require finer

spatial resolution than the surrounding environment.

One candidate for a spatial representation with these features is an unstructured, adaptive

mesh. In such a mesh the mesh points are not constrained to lie along constant coordinate

directions. Instead, mesh points are placed on the boundary to conform with the actual

geometry of the problem and are distributed in space to maximize the accuracy of the

calculation. Thus placed, the points are connected with line elements that form the edges of

triangles (see Fig. 1). These triangles are the Eulerian control volumes that form the basis

for the finite representation of the appropriate fluid equations. In the logical data structure

that describes the mesh, mesh points (and associated triangles) can easily be added or

deleted dynamically, based on predefined accuracy criteria. The spatial representation can

thus adapt to evolving spatial structures without the mesh distortion problems associated

es, 2

li,j = rvj-rvi

Vk es,3

FIG. 1. Triangle, edge, and vertex mesh elements.
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with Lagrangian formulations. Also, since the placement of the mesh points is not tied to a

magnetic field, separatrices and X-type neutral points can be readily resolved.

Techniques based on unstructured, adaptive meshes have come to maturity in computa-

tional fluid dynamics (CFD), where quantitative predictions in real geometry have become

essential in the design of aircraft and gas turbine engines [8]. These methods are generally

based the solution of a Riemann problem at each triangle interface (edge) to determine the

fluxes of energy, mass, and momentum [9]. The simplest extension of the hydrodynamic

model that is appropriate for the description of magnetic fusion plasmas is magnetohydro-

dynamics (MHD).

In this paper we describe an extension of these spatial gridding techniques to an MHD

model suitable for the description of the fully three-dimensional dynamics of plasmas with

axially symmetric geometry, such as toroidal fusion devices. Since the dominant MHD

modes in this geometry have relatively long toroidal wavelength, the toroidal coordinate is

approximated with finite Fourier series. The unstructured, triangular mesh is used to describe

the details of the poloidal geometry. The hydrodynamic variables are treated in a manner

analogous to that used in CFD. These quantities (mass, momentum, and energy) are volume

based densities that satisfy scalar or vector conservation laws. The electromagnetic variables

(the magnetic flux density B and the electric current density J) are area-based densities that

satisfy pseudo-vector conservation laws and have no counterpart in fluid dynamics. These

variables are constrained to remain solenoidal. These quantities are represented on the

triangular mesh in a manner that is an extension of that used on rectangular, structured
meshes.

In this work we have chosen to solve the primitive (instead of reduced [10-12]) MHD

equations in order to make the resulting codes and techniques more generally applicable to

problems beyond the narrow scope of tokamak plasmas. The temporal stiffness problems

inherent in this description of tokamak dynamics that motivate the reduced MHD model

are addressed here with the semi-implicit method of time integration [13-16]. We remark

that, while the present work deals strictly with the MHD equations, other volume-based

fluid descriptions, such as diffusive transport, could easily be adapted to these techniques

and coupled with the description of the electromagnetic field presented here.

We emphasize that a primary goal of this work is to develop an algorithm for the descrip-

tion of slow, nonlinear, long wavelength motions in toroidal geometry with arbitrary poloidal

shape. We have therefore used several low-order approximations that may be inappropriate

for problems in which the highly accurate description of strong shocks is required. The

solution of such problems will require extensions of the work described here. Nonetheless,

the present algorithm can reasonably describe shock formation and propagation at relatively
low Mach number.

This paper is organized as follows. In Section 2 we discuss the properties of structured

and unstructured meshes, and the data structures useful for describing them. Issues related

to the triangulation of an arbitrary set of points in a plane are also discussed. In Section 3 we

derive a finite volume approximation to the resistive MHD equations suitable for use on an

unstructured, triangular mesh in toroidal geometry. Boundary conditions are discussed here.

The specific MHD model and its implementation on the unstructured mesh are discussed

in Section 4. In Section 5 we discuss methods of time integration and describe our imple-

mentation of semi-implicit and fully implicit algorithms. Examples of the application of the

method are given in Section 6. Included are standard, two-dimensional hydrodynamic and

MHD shock problems, as well as applications of the method to the stability and nonlinear
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evolution of toroidal fusion plasmas in three dimensions. The summary and discussion are

given in Section 7.

2. COMPUTATIONAL MESHES

Continuous systems described by partial differential equations respond to differences

between the state of the system at one spatial location and the state at another spatial location

that is only infinitesimally distant. The state of the system is defined on a continuum of points

in the domain. In a finite analog of such a system, the infinity of points in the continuum is

replaced by a finite number of discrete points, and the infinitesimal distance is replaced by the

finite distance between neighboring points. For the purposes of computing the differences

in the state of the system between these points, near neighboring points can be thought of as

being linked together to form a mesh that covers the domain. The description of the mesh

consists of a list of the mesh points and their connectivity. The physical relationships between

the state of the system at one mesh point and that at all others then defines a finite-dimensional

set of nonlinear algebraic equations that are the exact equations of motion for the finite

system. The extent to which the dynamics of this finite-dimensional system approximate

those of the continuum system determines the accuracy and utility of the approximation.

The computational description of a continuous, time-dependent system, such as a mag-

netized plasma, has three components: a continuum model of the system that describes

the evolution of infinitesimally small volume elements for infinitesimally small intervals

of time; an approximation to the continuum model that describes the evolution of finite

sized volume elements for infinitesimally small intervals of time; and a description of how
these finite-sized volume elements evolve over finite time intervals. In this work we have

chosen resistive magnetohydrodynamics as the continuum model. This will be described in

Section 3. The finite temporal description will be given in Section 5. Here, and in Section 4,

we will discuss finite methods of spatial representation.

2.1. Structured Meshes

A structured mesh is one in which a predefined logical structure (or order) is assumed

to exist. For example, in 2D Cartesian coordinates, a structured mesh consists of a product

of two sets of mesh arrays (the x and y coordinates), with indices i and j, ordered by

increasing coordinate value. Two indices are required to identify a mesh point: point (i, j) has

coordinates x (i), y(j). The mesh is structured logically so that points (i + 1, j) and (i, j + 1)

are adjacent to point (i, j). This logical structure is assumed to hold for all points in the

domain and is implicitly used in constructing the finite-dimensional algebraic equations that

describe the dynamical evolution of the finite system. Structured meshes form the familiar

quadrilateral grids commonly used in numerical methods. The boundary of the domain

naturally consists of curves of the form x : const and y : const. (An irregular domain would

be built up from unions of such meshes.) As neighboring points are logically connected in

this way, adding and deleting points affects the indexing of all points in the mesh.

2.2. Unstructured Meshes

In contrast to a structured mesh, an unstructured mesh is one that has no predefined

logical structure. An unstructured mesh consists of a set of arbitrarily ordered points. A

single mesh index suffices to identify a point. Point ri, having coordinates xi and Yi, and

point i + l, having coordinates xi+l and Yi+l, are not necessarily adjacent.
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Since there is no pre-defined logical structure, the mesh points are not constrained to

lie along any predetermined curves; they may be arbitrarily distributed in the domain.

Neighboring points are then connected by line elements to form a mesh of triangles that

covers the domain. The mesh points ri form the vertices of the triangles, and the connecting

lines form the triangle edges. The mesh consists of Nv vertices, Ne edges, and Ns triangles,

with Nv < Ns < Ne.

With each triangle s we will associate a point rs. This point identifies the location of

the triangle in the domain. (The definition of r_ is not unique. This will be discussed in

Sections 2.4 and 2.5.) It is also convenient to define the edges of the triangles as directed

line segments, or vectors li,j, connecting point i with point j, i.e., li,j = rj -- ri. Every

edge e thus has triangle s + L on the left, and triangle s -- R on the right. With each edge

we also associate a unit tangent vector te = le/le, and a unit normal vector ne that points

from the left side to the right side. These mesh elements are sketched in Figure 1.

An unstructured mesh is identified and manipulated by means of primary and secondary

data sets. The primary data set consists of a list of mesh elements. Secondary data sets

define the connectivity between the primary mesh elements. For example, for 2D meshes

the spatial representation consists of triangular elements. The primary data set consists of

a list of cells (triangles), their vertices, and the edges connecting them. Additional data

sets consist of cross-indexing information that relate the elements of the primary set. For

example, an edge-indexed array specifies the indices of the cells to the left and right of an

edge. Other cell-indexed arrays specify the indices of the three vertices and three edges of
a cell.

2.3. Primary and Dual Meshes

Computational meshes, both structured and unstructured, are used not only to describe

geometric regions, but also to define differential operators. For the latter purpose, it is useful

to introduce the concept of primary and dual meshes. For a structured mesh, these are often

referred to as staggered meshes. An example of a two-dimensional structured, staggered

mesh is shown in Fig. 2.

In a finite-volume representation, different control volumes are used for different depen-

dent variables. For example, some dependent variables are defined on at the vertices of the

primary mesh; the control volume associated with these quantities is a rectangle formed by

the dual mesh. Other quantities are defined at the vertices of the dual, or staggered, mesh;

the control volume associated with these quantities is a rectangle formed by the primary

mesh. Meshes of this type have been used successfully in MHD simulation [16].

The concept of primary and dual meshes can be extended to triangular meshes. In this

case the primary mesh consists of the triangulation of arbitrarily placed points in the plane.

The mesh points are the vertices of the triangles. The dual mesh consists of polygons that

surround each vertex. The vertices of the dual polygons can be chosen in several ways. Two

choices will be discussed below. When taken together, the primary triangular mesh and the

dual polygon mesh are the generalization of structured, staggered meshes. An example of

a triangular mesh and its polygon dual are sketched in Fig. 3.

2.4. The Barycenter, or Centroid, Dual Mesh

We use a Delaunay triangulation [ 17] for the primary mesh. The Delaunay triangulation

maximizes the minimum angle of the triangulation; i.e., of all triangulations of the set P

the Delaunay triangles are the closest to being equiangular, on average. Because of this
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FIG. 2. Structured, staggered (dual) meshes.

property, these triangles are chosen as the primary control volumes. We use a dual mesh

whose vertices are the centroids, or barycenters, of each triangle. If the coordinates of the

triangle vertices (the points P) are rv, the coordinates of the vertices of the dual mesh are

given by

l(r v if- q- ) s 1 2, Nsrs -- _ 1 rv2 rv3 , -- , ..., , (1)

FIG. 3. Triangular (primary) and polygon (dual) meshes.
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where Ns is the number of triangles and the rvi are the three vertices of triangle s. This

dual mesh has the property that the vertices of the polygons are always interior to their

corresponding triangles. However, the edges of the dual meshes are not orthogonal, as in

the Voronoi dual mesh [ 17]. This complicates the calculation of some dependent variables,
as will be discussed in Section 4.

2.5. The Third (Toroidal) Dimension

One goal of this work is to describe magnetohydrodynamics in toroidal fusion systems.

The geometry of these systems is symmetric about an axis, and is best described in cylindrical

(r, 4), z) coordinates. We use the unstructured Delaunay triangular mesh and the barycenter

dual mesh dual to approximate the geometry in the poloidal (r, z) plane. Since the angular

(qS) coordinate is periodic and since the dominant MHD motions in this geometry are long

wavelengths in this direction, we have chosen a pseudospectral description using fast Fourier

transforms (FFTs) for this coordinate. The toroidal mesh is thus structured with a uniform

mesh spacing Aq5 = 2reiNed, where Ne is the number of toroidal mesh points; Ne must be

a power of 2.

The three-dimensional control volume is sketched in Fig. 4. The elemental volume is

A Vs = rsAckAa_, where Aa_ is the planar area of triangle s and r_ is the radius of the

triangle centroid. The Pappus-Guldinus theorem guarantees that this formula is exact.

2.6. Mesh Refinement

The use of an unstructured mesh allows for new triangles to be added and old ones

deleted in a relatively easy manner. Here we use the method of direct dynamic refinement

[18] (DDR). In this method the mesh is refined or coarsened automatically during the

execution of the algorithm, according to predetermined criteria. New triangles are added

to the end of the list, and old triangles are deleted and the list shortened. A new triangle is

added by introducing a new vertex at the centroid of a triangle to be refined. New edges

I

, ¢

_)

FIG. 4. Three-dimensional control volume.
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1
Original Grid Grid after One

Refinement

t
• Grid afte One
Refinement and Second

One Reconnection Refinement

Second Reconnection

FIG. 5. Mesh refinement and edge swapping (from [18]).

connect this vertex to the three vertices of the original triangle. The original triangle is

thus divided into three, and two new triangles, three new edges, and one vertex are added

to the lists. The new edges may need to be swapped between the new vertex and the

opposing vertices of the three neighboring triangles. The circumcenter test [19] is used

to determine whether or not edge swapping is required. The new triangulation is thus as

acute as possible. The addition of a vertex and edge swapping are sketched in Fig. 5.

Triangle deletion is sketched in Fig. 6. Edges of triangles may also be subdivided. The

triangle centered densities (mass, momentum, energy, and toroidal vector potential) can

then be distributed over the new triangles in a conservative manner. Edge centered quantities

(poloidal vector potential) are interpolated to the new mesh using the methods described in
Section 4.3.

Before adaption can occur a triangle must be identified for refinement or coarsening. We

have used several criteria for this purpose. Different criteria may be useful for different

problems. One criterion is based on a modified version of the classic interpolation estimate

originally developed for steady-state hydrodynamic computations [20, 21 ]. For each triangle
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Original Grid Point Removal

Constructing of Grid after
New Cells Reconnection and

Relaxation

FIG. 6. Mesh coarsening (from [18]).

s, we compute the normalized second derivative,

_s21V_esl
E, = (2a)

_slVesl-+- slUsl'

where 3s - _, Us is any triangle-centered dependent variable, s is a constant between

0 and 1 (typically, s -- 0.2), and the overscore indicates an average over triangle s and its

three neighbors. (For three-dimensional problems, the maximum of Es over the toroidal

dimension is taken.) In (2a), the quantity Es is dimensionless and bounded, so that it can be

used for a variety of problems and dependent variables. Another criterion is based on the

normalized average gradient:

_slVUsl
E s = _. (2b)

Umax

For either criterion (2a) or (2b), all triangles for which Es > ER are refined, while all

triangles for which Es < Ec are coarsened.

We have found that the proper choices of ER and Ec are as much an art form as they are

anything else. Choosing too small a value for E_ can result in too much refinement and,

hence, too many triangles. Refinement is done on numerical noise rather than on physical

structures. Choosing E_ too large can result in patchy refinement and poor resolution. The
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proper choices of ER and Ec also seem to be problem dependent. Much trial and error is

required. A rule of thumb is to start with ER -- 0.9 and Ec = 0.1, and make small variations

until a satisfactory grid results.

As mesh refinement and coarsening are time-consuming operations they are not done

every timestep. Mesh refinement is done after every NR timesteps, and coarsening is done

after every Nc refinement steps. Values of NR from 5 to 20, and Nc from 1 to 4, are typical.

Examples of refinement and coarsening are given in Section 6.

3. APPROXIMATION TO SPATIAL DIFFERENTIAL OPERATORS

The differential operators that appear in fluid-like equations are the gradient of a scalar,

the divergence of both a vector and a tensor, and the curl of vector. We now proceed to define

approximations to these operators on the triangular, unstructured mesh. We use the method

of finite volumes as applied to the three-dimensional volume element shown in Fig. 4.

Consider the triangle in the poloidal (r, z) plane shown in Fig. 7. We define normal and

tangent unit vectors ne and te at each edge such that

e¢ - te × ne, (3)

where e4 is the toroidal unit vector. (Note that e4 points "into" the page.) The normal and

tangent unit vectors are given by

le -- Areer + AZeez -- Alete (4)

AZeer -- Areez
n_ = (5)

Ale

and the area of the triangle is

1 1 1 13×111.Aas -- -_ I11 x 121- _ lie x 131- (6)

I"13

%

AI 3 t2 n2

e2 AI 2

FIG. 7. Poloidal projection of control volume.
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The unit normal vector ne points from the left side of edge e (triangle s = L e) to the right

side of edge e (triangle s - Re).

The finite volume method is used to obtain the approximations to the differential oper-

ators. In this method differential operators are defined in terms of their integral relations.
We assume all functions are of the form

f (r, _, z, t) -- Z f" (r, z, t)e i_4) (7)
F/

and then we integrate the appropriate identity over the three-dimensional control volume

shown in Fig. 4. (Since the toroidal representation is spectral and not finite-difference, the

limit of the resulting expressions as A_b --+ 0 is taken.) This technique assures that the same

integral relationships are obeyed by the finite difference approximations and their equivalent

differential operators.

To obtain an approximation for the gradient of a scalar we substitute Eq. (7) into the

integral identity

V f dV -- f fnds, (8)

and use second-order approximations to the volume and surface integrals to obtain

3

1 fs in
(V f)s -- _ re Alenefe - --er + -- fse4_. (9)

rsAas rs rs
e=l

The sum is taken over the three edges of triangle s, and the radius of edge e is re =

(rvel -+-rye2)�2, where rvel and rye2 are the radial coordinates of the vertices connected by

edge e. The quantity fe is the simple average fe = (fRe + fEe)�2, where the values fRe and

fee are the values of fs in the triangles lying to the right (Re) and left (Le) of edge e.

Similarly, for the divergence of a vector we use the identity

v. AdV -- f n AdS (10)

to obtain the approximation

(V. A)s =
1 3 in

e_l re Alene • Ae + -- A_s "rs Aas = rs
(11)

for the curl of a vector we use

f V x AdS-/t. Adl (12)

to obtain the approximation

(V × A)ne =

(V x A)e_ =

1 in
-_(rv+A4,v+ - rv-A4)v-) + --Ae • te,

reAle re

3
1

Aas Z Ae • le.
e=l

(13)

(14)
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Here we have taken surface and line integrals over the faces of the control volume and their

respective bounding edges. To approximate the divergence of a tensor we use

f V. TdV -/n. TdS (15)

to obtain

(V • T)s =

31

rsAa s Z reAle[er(ne "Te)r + e¢(ne • Te)¢ + ez(ne • Te)z]
e=l

in 1
+ --[e,.T_r_ + e4)T4)4)s+ e_Tq_] + --[e4)T4)rs - e,.T4,4,_]. (16)

rs rs

It is easy to verify from Eqs. (11), (13), and (14) that V • V x A- 0 for these finite

operators. This is a direct result of the use of consistent integral relations to obtain the finite

approximations.

4. THE MHD EQUATIONS: PLACEMENT OF THE VARIABLES ON THE MESH

In this work we solve the equations of resistive magnetohydrodynamics (MHD). In a

convenient nondimensional form, they are

0A
= -E (17)

Ot

E -- -v x B + rlJ/S (18)

B - V x A (19)

J- V x B (20)

Opv
= -V.T (21)

Ot
1

T - pvv- BB + _(p + B2)I (22)

Op
= -V. (pv) (23)

Ot

Ou
= -V.F (24)

Ot

H -- /91) 2 -t- B 2 nt- P (25)
V-1

?,-1 p v+2ExB, (26)

where S is the Lundquist number, r/is the resistivity, ?' is the ratio of specific heats, u is the

total energy density, F is the energy flux, I is the unit tensor, and T is the Reynolds-Maxwell

stress tensor. All other quantities have their usual meanings. Note that we have chosen the

conservation form of the equations. We have found this form satisfactory, even for plasmas

where the magnetic energy dominates the internal energy.

Equation (22) is often modified by the addition of an artificial viscosity of the form vVpv,

which leads to a vector Laplacian operator on the right-hand side of Eq. (21). This term
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is necessary to avoid the inevitable buildup of energy at the shortest available wavelength

()_ _ 3s -- _/s-a-_s) due to nonlinear mode coupling. We have found it necessary to choose

the viscosity component v such that the cell Reynolds number R/, = v3s / v is of order unity.

4.1. Hydrodynamic Variables

The boundary of the poloidal computational region is formed by triangle edges. We define

the momentum density pv, the energy u and the mass density p at the triangle centroids

rs. These quantities thus represent the momentum, energy, and mass per unit volume in a

triangular cell. (The quantities p_A V_, (pv)s A V_, and u_ A Vs are the total mass, momentum,

and energy in cell s.) Velocities in a cell are given by v_ -- (pV)s/Ps. The rate of change of

these quantities given by applying the differential approximations defined in Section 3.2 to

Eqs. (17)-(26). For example, the rate of change of mass density in triangle s is given by

3

Ops _ 1 in
-- _ reAlene "Fe + --F4_, (27)Ot rsAas

e=l Fs

where

ne " Fe = DeUne (28)

is the poloidal mass flux across edge e, and

F4)_ = psV4)s (29)

is the mass flux in the toroidal direction. The quantity Vne is the normal component of

velocity at edge e and is defined as

1

Une -- gne " (VLe -+- VRe). (30)

Expressions similar to Eqs. (27)-(29) hold for the momentum equation (Eq. (21)), and the

energy equation (Eq. (24)).

The advective flux at an edge e is computed using the full donor cell method. For example,

the right-hand side of Eq. (28) is evaluated as

(Fne)adv-- PLeVne, if V_e > O, (31a)

(Fne)adv -- PReVne, if V_e < O, (31b)

where Le and Re are the indices of the triangles to the left and right of edge e, respectively.

This method introduces numerical diffusion of order Vne6_/2, where 6__ _/Aa_. While

this technique may be too diffusive for highly accurate shock calculations, it is quite adequate

to describe the relatively slow motions of interest in tokamak dynamics. Problems involving

strong shocks may require a higher order treatment.

4.2. Electromagnetic Variables

The primary electromagnetic variable in this formulation is the vector potential A. We

define Ar and Az at the triangles edges e, and A_ at the triangle centroids s. Then Eqs. (13)

and (14) define Bne, the component of B in the poloidal plane normal to a triangle edge,

and Be_, the toroidal component of B at the triangle centroid. (Note that (V • B)_ _= 0.)
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Polygon edge Pe

Triangle edge e

v_

FIG. 8. Triangle and polygon edges.

The procedure described above defines only the component of B normal to each triangle

edge. To uniquely determine the magnetic field we must also define another independent

component of B in the poloidal plane. This is done by integrating Eq. (12) over the surface

of the dual polygon pe that crosses an edge e, as shown in Fig. 8. The polygon edge has a

unit normal vector llpe and a unit tangent vector [,pe. This defines Bnpe, the components of

B normal to the polygon edge. The cylindrical components of the poloidal field at a triangle

edge are then given by

1

Bre -- ---A(Bnerlpez - Bnpenez) (33)

1

Bze -- -£(Bnpener - Bnenper), (34)

where

A = %. (ne × npe) ¢ O, (35)

from which the tangential component of B at edge e is computed as

Bte = Bzener - Brertez • (36)

Similar relationships hold for the current density J. (Note that if the mesh consists of

Delaunay triangles and Voronoi polygons the dual meshes are orthogonal and this calculation

is simplified.)

In light of Eq. (17), we define the electric field E at the same spatial locations as the

vector potential A. The normal and tangential components of the electric field at a triangle

edge are given by

En_ = -_e_Bt_ + f_n_[_te+ rIJn_/S,

Ere = --f_ne[_4)e+ _4)eBne + rIJt_,/S.

(37)

(_8)

The toroidal electric field at the triangle centroids is given by

Ees = -vz,[_,., + V,-s[_z, + qJ¢_,/S. (39)
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We note that Eqs. (11) and (16) are the discrete equivalent of Gauss' theorem, and

Eqs. (13) and (14) are the discrete equivalent of Stokes' theorem. Thus, all conservation laws

obeyed by the resistive MHD equations have equivalent discrete statements. For example,

the rate of change of toroidal flux through the surface of any triangle is given by the line

integral of the tangential electric field around the edges of the triangle, in exact equivalence

to Lenz's law. This is a direct result of Eqs. (17) and (19) and the definition of the differential

operators given here. It is independent of the form of Ohm's law. If the surface is constructed

from several triangles, the line integrals over the interior edges cancel, and only the line

integral of the tangential electric field around the bounding surface remains. If that surface

is a perfect electrical conductor, the tangential electric field vanishes on the boundary and

the total toroidal flux is conserved, even in a resistive plasma.

4.3. Averages and Interpolation

In Eqs. (37)-(39), an overscore indicates that an average should be taken or that inter-

polation be performed. Several types of interpolation are required in the present algorithm,

especially during mesh refinement and coarsening. These are discussed in this section.

Interpolation from triangle centroids to edges is a simple average between adjacent tri-

angles:

1
f_ - 5(fR_ + fL_). (40)

Interpolation from vertices or edges to triangle centroids is also a simple average. For

functions defined on vertices,

1
(41)

and for functions defined at edges,

1
L "-- _(fel @ fe2 -+- fe3), (42)

where v l, v2, v3, and e 1, e2, e3 are the three vertices and edges of triangle s, respectively.

Interpolation from edges to vertices is given by

1

JQ = N_---__ fe,, (43a)
e t

where N_ is the number of edges meeting at vertex v, and d indicates a sum over those

edges, while the interpolation formula from vertices to edges is

1
fe -- -2 (fvl -Jr- fv2), (43b)

where v 1 and v2 are the two vertices joined by edge e.

For interpolation from triangle centroids to vertices, we use a pseudo-Laplacian weighted

average [22]. In this approach, the interpolated value of a function at vertex v is given by

the weighted average

f_ = _,,(1 + _,,)L,
_,,(1 + w,,) ' (44)
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where the prime (s') indicates that the sums are taken over all triangles sharing vertex v,

and not over all triangles/Vs.

The weights ws are determined by requiring that they be as small as possible and that the

interpolation be exact for linear functions. We then minimize the functional

2 (45)F (w,) -- Z Ws'
S t

subject to the constraints

Lr - Z(1 + w_,)(r_, - rv) - O, (46a)
S t

Lz = _(1 + w_,)(z¢ - zv) - O, (47b)
S t

where (r_, z_) and (rs, Zs) are the coordinates of the vertex and the centroids. The result is
that

w_ -- _.r Ar_ + )_zAzs, (48)

where Ar_ -- r_ - r_, Azs = Zs - z_, and )_ and )_z are Lagrange multipliers given by

Rz lrz - Rr Izz
)k, 1.

[frizz -- I2

Rz Irz -- Rz Irr

_.z --

Irrlzz -- I2z

Rr -- _ Ars,,

S t

Rz -- Z Az_,,
S t

Irr -- _(Ars,) 2,

S t

Izz -- Z(AZs') 2,

S t

Lz = _ Ars, Az¢.
S t

(49)

(50)

(51)

(52)

(53)

(54)

(55)

Equations (40)-(44) have low order of accuracy. The use of higher order interpolation

methods, especially in place of Eq. (40), can be shown to lead to a non-Hermitian formu-

lation of sound waves and resulting unphysical behavior.

A complication is that neither Eqs. (40) and (42), Eqs. (41) and (44), nor Eqs. (43a) and

(43b) are exact inverses of each other. Thus, for example, interpolation from centroids to

vertices using Eq. (44), followed directly by interpolation from vertices to centroids using

Eq. (41), introduces errors. Heuristically, these errors do not seem critical to the results

obtained with the algorithm, but their affect on problems in parameter regimes other than

those studied in the present work cannot be assessed.
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4.4. Boundary Conditions

Since the computational boundary consists of triangle edges, the mass density in triangles

adjacent to the boundary is completely determined by the normal velocity Vne at the bound-

ary. The momentum density and energy density also require that the normal component

of the magnetic field, Bne, and the total pressure, p + B 2, be specified. For a nonporous,

perfectly conducting wall, the appropriate boundary conditions are that B_e -- v_ = 0, and

that the normal gradient of the total pressure vanish. Implementation of boundary conditions

is aided by introducing ghost triangles that lie outside the boundary and are reflections of

interior triangles that contain a boundary edge. For the electromagnetic variables it is suffi-

cient to specify the electric field tangent to the boundary. Thus, for a perfectly conducting

wall Et_ = Ee_ -- 0, where Ee_ is the average of the toroidal electric field in a boundary cell

and its reflected ghost cell.

When the inner boundary extends to r = 0, regularity conditions must be applied to

the complex Fourier coefficients. For scalars (pVz, Az, Bz, Jz, P or u, and p), all Fourier

components vanish except n =0, which have zero derivative. For vector components

(pVr, pv e, At, A e, Br, By, Jr, and Je), all Fourier components vanish, except n = 1, which

have zero derivative. However, for n- 1 this condition is only directly applied to the

r-component of vectors. The qS-component is found from the relation Vr + i V e --0, which

assures that the Cartesian (x, y) components of the vector are unique at r -- 0.

Boundary conditions corresponding to applied tangential or toroidal electric fields and

to supersonic inflow (specified upstream velocity, pressure and density) and outflow (zero

normal derivative of pressure, density, and velocity) have also been implemented.

5. TIME INTEGRATION

As is appropriate for sound and Alfv6n waves the time integration algorithm uses an

explicit leapfrog method with predictor-corrector steps to stabilize the nonlinear advective

terms. The leapfrog scheme is second-order accurate for uniform time steps, while the

predictor-corrector is formally first-order accurate in time. The velocity and momentum

are defined at time t_. The energy density, mass density, and vector potential are defined

at time t n+l/2. The time step can be arbitrarily large; the semi-implicit method [13-16] is

used to remove the CFL time-step restriction and is second-order accurate for uniform time

steps. Artificial viscosity, which is required for nonlinear numerical stability, is treated fully

implicitly and is, therefore, first-order accurate.

The time advance proceeds by means of operator splitting, i.e.,

or

0U

Ot
total semi-implicit

_ _ U f/

At

= Fexplicit

: Fsemi-implicit

= Fviscous,

viscous

(56)

(57a)

(57b)

(57c)
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where U is the state-vector describing the system, and Fexplicit, Fsemi-implicit, and Fviscous

represent the explicit (wave-like and advective), semi-implicit, and viscous terms that appear

on the right-hand side of the equations. Details of these methods are given in the following

sections.

5.1. Explicit Advance

Wave-like and advective terms are advanced explicitly with At chosen for accuracy and

computational convenience rather than numerical stability. The explicit part of the algorithm

is

DV* -- pvn-1/2

At
"-- --V" (pVV) n-l/2 (58)

pvn+l/2 _ pvn-1/2

At
* 1 B2)n= -v. [(pvv) - (BB) "] - 5V(p + (59)

jn _ V x B n (60)

* __ A n

At
= V n+l/2 X B n (61)

B* - V x A* (62)

An+l _ A n

At
-_ V n+l/2 X B* - rlJn/S (63)

tO* __ pn

At
= --V. (tOnvn+l/2) (64)

tOn+l _ tOn

At
= -V-(tO*v n+!/2) (65)

u* -- U n y
= --V • _ pnvn+l/2 (66)

At y- 1 _

p* -- (g - 1)[u* - (tOy2) n+l/2 - (B2) n+l] (67)

E n+l -- --V n+l/2 X B n+l + _Tjn+l/s (68)

bin+ 1 _ bl n

At = --V" / [(tov2)n+l/2--[- n+l/2 -t- 2 E n+l × B n+l } (69)

pn+l __ (y _ 1)[un+l _ (tOv2)n+l/2 _ (B2)n+l]. (70)

Total mass, momentum, and magnetic flux are exactly conserved. Because the pressure,

magnetic field, mass density, and momentum are defined at different time levels, the sum

of the kinetic, magnetic, and internal energies is exactly conserved in the limit At --+ 0,

independently of spatial discretization. (The volume integral of the quantity u is exactly

conserved independently of At.) The predictor-corrector steps introduce an additional

diffusion of order v At/2 that can exceed the diffusion from the donor cell fluxes when the

time step exceeds the explicit CFL stability limit.
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5.2. Semi-Implicit and Implicit Solutions

We use the semi-implicit method [13-16] to remove the CFL time step restriction for

numerical stability associated with the explicit advance described in Section 5.1. This

restriction is of the form C At/3 < 1, where C- _/V 2 + C 2 + V 2 is the characteristic
It

speed for the propagation of disturbances, and 3 is a measure of the linear size of a zone

(here proportional to the square root of the triangle area). With the use of the semi-implicit

method the algorithm becomes numerically stable at arbitrary At so that the time step can be

chosen for reasons of accuracy or computational convenience rather than numerical stability.

The time step remains limited by the advective CFL stability condition VAt/3 < 1, where

speed. This is not a significant restriction when V/v/C 2 + V 2 << 1, as is

g

V is the local flow

case for many fusion applications. When V/v/C 2 + V 2 _ 1, as is the case for shocks,the

the algorithm becomes explicit. This restriction can thus be viewed as an accuracy condition.

In this work we use a simple vector Laplacian semi-implicit operator [16]. This term is

added to and subtracted from the right-hand side of the momentum equation at the new and

old time levels. The semi-implicit advance is

(1 - o_AtV2)(pv) ** -- (pv)* - otAtV2(pv) n, (71)

where c_is the semi-implicit coefficient given by

ot -- - 1 for At> Atcv_, (72)
k2axAt AtcFL

0t -- 0 for At < AtCFL, (73)

where (pv)* is the value of momentum obtained from the explicit advance (Eq. (59)),

kmax _ 1/3s is the largest wave-number resolved on the mesh, AtcFL is the maximum time

step allowed by the CFL restriction for normal modes, and cr is a constant >1. Since Eq. (71)

is second order in space, boundary conditions must be applied to the tangential (_b and z)

components of the momentum density. For inviscid flow, the normal derivative is set to zero

at solid boundaries; for viscous flow, the tangential momentum is set to zero. In either case,

the normal component vanishes at solid boundaries. For supersonic inflow, the upstream

velocity is specified. For outflow, the normal derivatives of all components are set to zero.

Boundary conditions at r - 0 are as described in Section 4.4.

The time step is completed with the implicit viscous advance

(1 -- vAtV2)(pv) n+l -- (pv)**, (74)

where v is a (possibly spatially dependent) artificial viscosity coefficient. All components of

momentum are set to zero at solid boundaries. For inflow, outflow, and r = 0, the boundary

conditions are as described for Eq. (71).

The vector Laplacian operator appearing in Eqs. (71) and (74) requires the definition of

the scalar Laplacian. This is accomplished by the successive application of the gradient and

divergence operators defined in Eqs. (9) and (11). When combined with the condition

(Vf)a -- (Vf)e, (75)
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FIG. 9. Matrix structure for the Laplacian operator on an unstructured mesh.

where the subscripts G and B represent values in ghost and boundary triangles, respectively,

the resulting operator is self-adjoint.

Since the mesh is unstructured, the Ns x Ns matrices corresponding to the operators

appearing in Eqs. (71) and (74) are not banded but are sparse. An example of the structure

pattern for a case with 320 triangles is shown in Fig. 9. Matrix inversion is performed with

a conjugate gradient (CG) algorithm with diagonal preconditioning [23]. Since this method

is iterative, the full N_ x N_ matrix never needs to be stored. Good convergence properties

have been found, even with relatively large time steps.

At this time the resistivity is treated explicity. Since _I/S << 1 we have not found this to

be computationally restrictive.

6. APPLICATIONS

The algorithm described above has been applied to several nonlinear test problems, both

two- and three-dimensional. The code based on the algorithm is called TRIM, for TRiangular

MHD. The application of TRIM to these test problems is described in the following sections.

6.1. The Hydrodynamic Shock Tube Problem

A standard problem for testing hydrodynamic algorithms has been defined by Sod [24].

The initial conditions consist of two fluids with different uniform properties separated by

a membrane. The fluid to the left of the membrane has both pressure PL and density PL

equal to 1. The fluid to the right of the membrane has PR = 0.1 and PR = 0.125. The initial

velocity is zero and the ratio of specific heats is ?/---- 1.4 (air). The magnetic field is zero.

These conditions are sketched in Fig. 10.

At t--0 the membrane is ruptured and the fluid reacts dynamically. This Riemann

problem is one of the few fully nonlinear problems that has a known analytic solution [9],

and is therefore valuable for testing numerical algorithms. The solution consists of an
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FIG. 10. Initial conditions for hydrodynamic shock tube problem.

expansion wave traveling to the left and a shock wave and a contact discontinuity traveling

to the right, all with known velocities.

We have applied the TRIM algorithm to this problem. The time integration is explicit

and the artificial viscosity v is set to zero. While this test problem is one-dimensional, the

triangular grid in TRIM requires that a two-dimensional problem be solved. The mesh is

shown in Fig. 11. It contains 1250 triangles. In this figure, the initial membrane is horizontal

and centered at z = 0.5. As the solution proceeds in time no spatial variation develops in the

direction parallel to the membrane. The solution thus remains one-dimensional, even with

the two-dimensional algorithm. The analytic solution at t -- 0.1 is shown in Figs. 12a-c.

The results of TRIM with the mesh shown in Fig. 11 is shown in Figs. 13a-c at

t = 0.1. The magnitude of the pressure and velocity in the region between the shock and

1.0

0.5-

0.0
1000.0 1000.5 1001.0

FIG. 11. Mesh for hydrodynamic shock tube problem, with superimposed contours.
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FIG. 12. (a-c) Analytic solution to the hydrodynamic shock problem.

the expansion fan are quite accurate. (Note the because of the normalization the pressure

in TRIM appears to be twice the pressure in the analytic solution.) As is anticipated, the

numerical diffusion introduced by the first-order upwind treatment of the interface fluxes

has resulted in a considerable smoothing of the discontinuities. This is especially notice-

able in the density. The contact discontinuity, which is an interface separating regions of

different density but equal pressure and velocity, has been considerably smeared out. This

structure is particularly difficult to treat numerically. In contrast with a shock, there are

no nonlinear processes that continue to generate a contact discontinuity in opposition to

numerical diffusion; it is merely an interface between two states of different density. The

effect of any diffusion in the algorithm is felt most strongly here.

One solution to the problem of numerical diffusion is to employ a higher order approxi-

mation to the interface fluxes. Another solution is to use a low order method but to reduce

the diffusion by adaptively refining the mesh in the regions near the discontinuities. We
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FIG. 13. (a-f) Comparison of numerical solutions without (a-c) and with (d-f) dynamic mesh adaption.

have applied the mesh refinement techniques described in Section 2.7 to this problem.

For this problem we used the mass density p as the dependent variable in the refinement

criterion, Eq. (2a), with e =0.2, ER =0.8, and Ec =0.2. (Smaller values of ER resulted

in an unacceptable number of triangles; larger values resulted in patchy refinement. See

Section 2.6.) Both refinement and coarsening were done every 50 timesteps. The initial

mesh is shown in Fig. 14a. This mesh has been refined in order to initially capture the

pressure and density discontinuities. The adaptively refined mesh at t = 0.1 is shown in

Fig. 14b. The algorithm has adapted the mesh to the dynamically evolving shock, contact

discontinuity, and expansion front. The initial mesh had 7777 triangles, and the dynamically

evolving mesh contained up to 34,415 triangles.

In Figs. 13a-f we compare the solution at t =0.1, with and without adaption. All

features are sharper with dynamic mesh refinement than without. In both cases, the jump

conditions are exact. The discontinuities become sharper as the grid is refined. However, we

are unable to furnish an estimate of the error as a function of grid refinement, as this is the only

satisfactory grid we could produce. As anticipated, the major error is in the contact discon-

tinuity. This error can only be eliminated by the use of a higher order method, such as a

Riemann solver. This is beyond the scope of the present work. We emphasize that problems

involving strong shocks are uncommon in fusion plasmas, so that low-order methods are

sufficient for these applications.

6.2. The Magnetohydrodynamic Shock Tube Problem

The hydrodynamic shock tube solution described in the previous section has been ex-

tended to MHD by Brio and Wu [25]. The thermodynamic properties of the left and right

states are the same in the purely hydrodynamic case. A uniform magnetic field Bx is imposed

in the direction (x) perpendicular to the membrane. The component of the magnetic field By

parallel to the membrane is discontinuous at the membrane, with ByL = 1 and By_ = -1.
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FIG. 15. Initial magnetic field vectors for the MHD shock tube problem.

The membrane is thus a current sheet in the z-direction. The magnetic configuration is

sketched in Fig. 15.

The dynamics after the membrane is ruptured are much more complex than in the purely

hydrodynamic case; we refer the reader to Ref. [25] for details. In Fig. 16 we present

our two-dimensional solution of this problem. This can be compared with the more finely

resolved one-dimensional solution of Brio and Wu [25]. We find that most of the details

of the Brio-Wu solution are reproduced in our results, although the effect of the low-order

diffusion is again apparent, especially near the contact discontinuity. We have also repeated

the calculation with the component of magnetic field parallel to the membrane rotated by

rr/2 and find identical results for this polarization.

We have also applied mesh refinement and coarsening to the MHD shock tube prob-

lem. The refinement and coarsening criteria are the same as described in Section 6.1. Fig-

ure 17 shows a comparison of the mass density p with and without dynamic mesh adaption.

Finer structure is observed when dynamic mesh refinement is implemented. However, the

contact discontinuity is still poorly resolved due to the low order calculation of the interface
fluxes.

6.3. Supersonic Flow Past a Sphere

We now consider the case of steady axisymmetric supersonic flow past a solid sphere.

The sphere is centered at r = z -- 0. The boundary of the sphere is at r 2 + z2 = 1.

The outer boundary of the computational domain is a cylinder of radius r = 10 with

ends at z = + 10. Supersonic inflow conditions are imposed at the upper boundary (z --=10)

and outflow conditions are imposed at the lower (z =- 10) and outer (r -- 10) boundaries.

Regularity conditions are imposed at r = 0.

The initial conditions consist of uniform pressure, density, and axial velocity (vz). The

initial radial velocity (vr) is set to zero. The parameters are chosen so that the initial axial

velocity corresponds to an upstream Mach number M = v/cs -= 2.

With the magnetic field set to zero, the hydrodynamic equations are integrated forward

in time until a steady (time independent) state is reached. A small amount of viscosity
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FIG. 16. Numerical solution of the MHD shock tube problem. This can be compared with the solution given

in [25].
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FIG. 17. Comparison of the results for the MHD shock tube problem without and with dynamic mesh adaption.
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FIG. 18. Velocity vectors and pressure contours for M = 2 flow past a sphere.

(v = 10 -3) was used in this calculation. In the steady state a shock forms in front of the

sphere as the flow is deviated around it. The flow separates from the surface of the sphere

and forms a recirculating eddy behind it. The pressure contours and velocity vectors in the

vicinity of the sphere are shown in Fig. 18.

This calculation was performed using an adaptive mesh along with the criterion given by

Eq. (2b). The mass density was used to compute the normalized gradient. The mesh was

locally refined if Es > 0.95, and coarsened if Es < 0.05. Refinement and coarsening were

performed every 500 timesteps. The initial and final meshes are shown in Figs. 19a and b.

The final mesh has 13,360 triangles.

We have repeated this calculation, but with a dipole magnetic field embedded in the

sphere at t = 0. The axis of the dipole is aligned with the upstream flow direction. This

field is given by the vector potential

Ae -- B0 (r 2 4-z2_ _12' (76)

where B0 is the strength of the magnetic field at r = 1, z = 0. The resistivity was taken

to be uniform and to correspond to a Lundquist number of S = 103. A coarse mesh was

used. The mesh in the vicinity of the sphere is shown in Fig. 20. The initial magnetic field

is shown in Fig. 21.

As the calculation proceeds, the initial dipole field remains embedded in the spherical

boundary and is swept downstream behind the sphere. The shock remains in front of the

sphere. The final magnetic field for the case B0 = 0.5 is shown Fig. 22, and the adapted

grid is shown in Fig. 23.
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FIG. 19. (a) Initial mesh; (b) final, adapted mesh for M = 2 flow past a sphere.

6.4. Nonlinear Evolution of Toroidal Instabilities

One of the standard applications of MHD to fusion plasmas is the linear growth and

nonlinear saturation of instabilities. These instabilities can occur because toroidal equilibria

are not necessarily minimum energy states, even though they are extrema of the energy.

Equilibria that are local maxima of the energy are unstable, with small deviations from

the initial state growing exponentially in time. Determining the stability of equilibria is an

important problem in the design of a fusion experiment. Even stable equilibria can be driven

unstable by diffusive processes [7].

It is to be emphasized that algorithms of the type described in this paper are not the most

efficient or accurate way of computing linear stability. Specialized algorithms that find the

eigenvalues of the linearized MHD operator are better suited to this problem [26]. Nonethe-

less, linear stability problems are among the few three-dimensional toroidal problems with

known solutions (generally obtained with the specialized algorithms [26]) and are therefore

valuable benchmarks for nonlinear, time-dependent algorithms.

Physically, linearly unstable MHD modes are of interest only if they impart some obser-

vable, and hence, finite and nonlinear, perturbation to the physical system. The details of
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FIG. 20. Mesh used for flow past a sphere with an embedded dipole magnetic field.

the nonlinear evolution of linearly unstable modes requires that algorithms of the present

type be employed.

6.4.1. Solov'ev Equilibrium

Axially symmetric force balance in a toms is given by solutions to the Grad-Shafranov

equation

A*O r2V. VO 1 2dP dF-- = -r F -- (77)
r 2 2 d_ d_'

where O(r, z) -- rA 4) is the poloidal flux, and the pressure P(gt) and the toroidal flux

function F (_) -- r By are arbitrary functions of _. An analytic solution has been given by
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FIG. 21. Initial dipole magnetic field.

Solov'ev [27]. With

4 14-K 2
p(gr)- --(_- 1) (78)

8 2 K 2

2b
F(_) -- --(1 - 1_) !/2 4- C (79)

8K

the poloidal flux and toroidal field are

1 I (r2 4- b2)z2l/_,r(r, Z) -- 7 K 2 (r 2- 1)214- 4 (80)

C
_+- +o(b), (8_)

r

where e - a/R is the inverse aspect ratio, tc is the elongation, b is a diamagnetic factor,

and C is a normalization constant that determines the strength of the vacuum toroidal
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FIG. 22. Final magnetic field configuration for M = 2 flow past a sphere with an embedded initial dipole

field.

field. Contours of f, and P with tc = 1 and b = 0 are shown in Fig. 24. Since b = 0, this

equilibrium has no poloidal current (Jr,- = Jz = 0).

Linear stability and comparison withprevious results. The linear stability of the Solov'ev

equilibrium to large-scale MHD modes has been extensively studied using specialized

eigenvalue techniques [28]. We have developed a "linearized" modification of the TRIM

algorithm to study the linear stability of this equilibrium. This modification is possible

because of the pseudospectral representation. In these calculations the initial conditions

consist of the axisymmetric (n - 0) equilibrium, such as Eqs. (80) and (81), along with very

low amplitude random noise in the velocity field of a single n = no > 0 toroidal mode. All

other toroidal modes are set to zero initially. The calculation then proceeds as described

in Section 5, except that after each time step the amplitudes of all modes with n :A no are

reset to zero and the n = 0 (equilibrium) component is restored to its initial value. This

effectively disables any nonlinear or quasilinear mode couplings and affords a good ap-

proximation to the solution of the linearized equations. The magnetic and kinetic energies

of an unstable mode will grow exponentially with time as exp(2yt), allowing the growth

rate (eigenvalue) y to be calculated. The self-similar spatial structure of the growing mode

defines the eigenvector.
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FIG. 23. Adapted grid for flow past a sphere with embedded dipole magnetic field.

The Solov'ev equilibrium can be completely parameterized in terms of the three non-

dimensional constants e (the inverse aspect ratio), tc (the elongation), and q0 (the safety

factor on axis). In Ref. [28] values of normalized growth rate 7ra (where T a is the Alfv6n

transit time) were obtained over a range of q0 for values of e = 1/3 and K = 1 and 2. Here

we have primarily focused our attention on the cases with q0 = 0.5, which exhibit robust

instability to ideal MHD modes for these values of e and K. Special cases with q0 = 0 and

q0 = 0.8 will also be described. Also, we have used a boundary condition that corresponds

to a perfectly conducting boundary placed at the plasma edge. Thus, only internal (rigid

boundary) modes are considered.
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FIG. 24. Contours of poloidal flux and pressure for the Solov'ev toroidal equilibrium with x = 1.

When the semi-implicit method is used to take time steps that exceed the CFL limit, the

growth rate will be a function of the time step [16]. This is discussed in more detail later in

this section. The actual growth rate is obtained in the limit At --+ 0. (In practice, we only

take the limit At/AtcFL --+ 1.) Here we have performed such a convergence study only for

the two cases e = 1/3, no = 2, q0 --0.5, and K = 1 and 2. Quantitative comparisons should

be made for these cases only.

For the converged cases (q0 = 0.5, no -- 2), we find for K - 1, g Ta = 0.122, as compared

with ?'ra --0.158 from Ref. [28] (when converted to our normalization); for K = 2, we find

gra =0.22, compared with gra =0.28 from Ref. [28]. The time-step converged growth

rates determined from TRIM are about 20% lower than those of Ref. [28] and are consistently

lower for the nonconverged cases. A quantitative result for the case with q0 = 0, tc = 1, is

not given in Ref. [28], where this mode is identified as "an m = 0 mode and not a kink."

The eigenfunctions (spatial structure) for the cases no = 2, 3, and 4, q0 = 0.5, and K -- 1

are shown in Figs. 25-27. In each figure, velocity vectors of the real part of the poloidal

velocity (v,,, vz) and contours of the imaginary part of the toroidal velocity (re) for mode

no are shown. For the no = 2 mode, the poloidal structure is dominantly m = 1, while for

the no = 4 mode, the poloidal structure is dominantly m- 2. This is consistent with the

value q0 --0.5, and in agreement with the results of Ref. [28]. The eigenfunction for the

case no = 2, qo = 0, K = 1 is shown in Fig. 28. It is easy to see the dominant m = 0 inter-

change structure of this mode.

The equilibrium for the case x --=2, qo = 0.5 is shown in Fig. 29. Velocity eigenfunctions

for the cases tc = 2, q0 = 0.5, and no = 2 and 3 are shown in Figs. 30 and 31. The dominant

poloidal mode structure is in agreement with that of Ref. [28]. Finally, in Fig. 32 we display

the velocity eigenfunction for the case K = 2, q0 = 0.8, no = 1. The rigid m = 1displacement

of the mode is in contrast with the vortex structure displayed by the other unstable modes

found here.

Effect of time step on linear growth rate. As discussed in Section 5, TRIM uses the semi-

implicit method [13-16] to achieve time steps in excess of that set by numerical stability

constraints. As shown in Ref. [16] the semi-implicit method reduces the characteristic
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FIG. 25. Linear eigenfunction for the n = 2 mode in the Solov'ev equilibrium with _c-- 1, q0 = 0.5, R/a = 3.

Velocity vectors display the real part of the poloidal velocity (v,, v:), contours display the imaginary part of the

toroidal velocity (v:).

frequency of a mode with wave number k by a factor

co 1
= , (82)

coo _/l + c_kZAt

where oe is the semi-implicit coefficient and coo is the frequency obtained by an explicit

FIG. 26. Linear eigenfunction for the n -- 3 mode in the Solov'ev equilibrium with K = 1, q0 = 0.5, R/a -- 3.
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FIG. 27. Linear eigenfunction for the n -- 4 mode in the Solov'ev equilibrium with K = 1, q0 = 0.5, R/a = 3.

calculation with At -- AtCFL. Using Eq. (72), this expression can be rewritten as

CO _I I ( At )2 ] Q k )2

= 1 1 + c_ - 1 (83)
COO AtCFL _ '

where o- is a constant of order unity and kmax is the maximum value of k that can be resolved

on the grid. For unstable modes, the frequency co becomes the growth rate V.

For the case no = 2, K = 1, and q0 = 0.5 (see Fig. 25), we have kmax -- 164 (corresponding

to 2090 triangles), k _ 15 (corresponding to _.,-_ _.z _ 2a _ 0.6), and o- = 1.5. This case

was run with a small amount of artificial viscosity, v -- 10 -4. In Fig. 33 we plot the ratio

Y/Yo obtained from both TRIM and from Eq. (83) as a function of At/AtcFL for this case.

These results substantially confirm the effect of the semi-implicit method on the growth

rate. The discrepancy between the two curves may be due to the artificial viscosity or other

numerical damping inherent in the algorithm.

Nonlinear results. The linear results described above were obtained by removing all

nonlinear interactions, freezing the n- 0 component of the solution, and allowing only a

single mode with n -- no to evolve. To obtain the full nonlinear dynamical evolution of

the unstable equilibrium, all modes with n > 0 are initially perturbed, all nonlinear inter-

actions are restored, and the n -- 0 component is allowed to evolve under the influence

of unbalanced forces, resistivity, viscosity, and nonlinear effects. Since these cases may in-

volve large amplitude displacements and considerable dynamics, larger values of resistivity

and artificial viscosity are used than in the strictly linear results. Typical values are S - 104

and v- 10 -2. Total toroidal flux is conserved.

In Fig. 34 we plot the time evolution of the kinetic energy in the modes 1 _<n :i_ 5 (corre-

sponding to 16 toroidal mesh points) for the case K -- 1, q0 - 0.5, R/a -- 3. The time step
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FIG.28.Lineareigenfunctionforthen = 2 mode in the Solov'ev equilibrium with tc = 1, q0 = 0, R/a = 3.

Note the m -- 0 interchange structure.

is such that At / AtCFL = 1 1.5. Because of the finite resistivity, the total toroidal current de-

cays and its profile peaks during the evolution, thus altering the linear stability properties of

the discharge. The n = 2 mode is linearly unstable, grows to finite amplitude, and saturates.

The n = 4 mode, which was found to be linearly unstable by both TRIM and in Ref. [28],

exhibits initial exponential growth at approximately twice the rate of the n = 2 mode. This

Poloidal Flux Pressure

FIG. 29. Poloidal flux surfaces and pressure contours for the elongated Solov'ev equilibrium K =2,

q0 =0.5, R/a =3.



UNSTRUCTURED GRID MAGNETOHYDRODYNAMICS 107

FIG. 31). Linear eigenfunction for the n = 2mode inthe Solov'ev equilibriumwith tc = 2, q0 = 0.5, R/a = 3.

and the delayed onset of the mode imply that this mode is driven nonlinearly by the n - 2

mode rather than by inherent linear instability. The change in the linear stability properties

of this mode may be due to the modification of the n - 0 component by resistive diffusion,

but we have not verified this conjecture. The n -- 1 and n - 5 modes exhibit complete lin-

ear stability. The small amplitude increases at late time in these modes is due to nonlinear

spectral broadening from the saturation of the n -- 2 mode. The n -- 3 mode shows some

small indication of linear instability late in the calculation but prior to n -- 2 saturation. We

cannot rule out nonlinear spectral broadening as the cause of this increase. In Fig. 35 we plot

contours of the pressure in the saturated state at four different toroidal locations spanning

one-half of the torus. The predominantly n -- 2, m -- 1 helical displacement of the plasma

column is evident.

The same calculation has been performed for the case tc - 2, R/a -- 3, qo -- 0.5, with 32

toroidal mesh points (corresponding to toroidal mode numbers 0 _< n < 10 after dealiasing).

The magnetic energy in the modes 1 < n < 10 is shown in Fig. 36. The modes n- 2 and

n - 3 exhibit robust linear instability. The n -- 4 mode also indicates initial linear instability,

but makes a transition to being nonlinearly driven by the n - 2 mode later in the calculation.

The n -- 1 and n -- 5 modes are driven by the nonlinear interaction of the n -- 2 and n - 3

modes, and the n -- 6 mode is nonlinearly driven by the n -- 3 mode. All other modes

appear to be driven by nonlinear spectral broadening. The finite amplitude of all modes

at the end of the calculation probably indicates that more toroidal mesh points (modes)
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FIG. 31. Linear eigenfunction for the n -- 3 mode in the Solov'ev equilibrium with x = 2, q0 -- 0.5, R/a -- 3.

are required for proper resolution of the nonlinear state. In Fig. 37 we plot contours of

the pressure in the saturated state at four different toroidal locations spanning one-half the

torus. Again, the helical displacement is topologically m - 1, n -- 2 dominant.

6.4.2. ITER Equilibrium

In Figs. 38a and b we display poloidal flux and pressure contours for an equilibrium

that is representative of ITER, an international fusion test reactor that is presently being

designed [29]. The outer boundary is the separatrix, or last closed flux surface; it is intended

that the plasma is confined within this surface. This equilibrium been constructed to be

robustly unstable to an internal kink mode with toroidal mode number n--2. The safety

factor profile is shown in Fig. 39. (This equilibrium is unphysical, but it retains the ITER

cross-sectional shape and is robustly unstable. It thus serves as a demonstration problem.)

The linear instability has been computed with the GATO code [26], which directly solves

the resulting linear eigenvalue problem.

The boundary of the calculation is the separatrix, which we take to be rigid and per-

fectly conducting. The unstructured mesh inside the separatrix with Ns = 5728 is shown in

Fig. 40. The equilibrium is initialized to this mesh by cubic spline interpolation, and the

resulting force imbalance is resolved with viscous damping. We have also found it useful to

introduce spatially dependent resistivity, with S = 106 near the magnetic axis and S = 104

near the separatrix. Thus resistive flow is always present and true static equilibrium is not
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FIG. 32. Linear eigenfunction for the n = 1 mode in the Solov'ev equilibrium with tc = 2, q0 = 0.8, R/a = 3.

Note the rigid m = 1 displacement of this mode.
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FIG. 33. The effect of the semi-implicit method on the linear growth rate obtained with TRIM for the case

K = 1, q0 = 0.5, R/a -- 3, n = 2, as a function of the time step (in excess of the CFL limit).
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FIG. 34. Kinetic energy in the modes 1< n :_5 versus time for the nonlinear evolution of the Solov'ev
equilibrium with tc = 1,q0= 0.5, R/a -- 3.

achieved. The resistivity also causes the current to peak near the magnetic axis, thus altering

the safety factor profile.

After axisymmetric relaxation, three-dimensional modes are perturbed with random noise

at very low amplitude. For this calculation we use a toroidal mesh with Ne = 8 toroidal mesh

points, so that three toroidal Fourier modes (n = 0, 1, 2) are included after dealiasing. This

resolution is marginally acceptable for highly accurate calculations, but will demonstrate

the utility of the TRIM algorithm for this problem.

The kinetic energy in the n = 1 and n = 2 modes are shown in Fig. 41. The n = 2 mode

is unstable and the n = 1 mode is stable, in agreement with linear calculations [29].

The linear eigenmode for the poloidal velocity is shown in Fig. 42, where the poloidal

velocity vectors are shown at the eight toroidal locations included in the calculation. The

flow pattern has the clear counterrotating vortex structure of an internal kink mode with

dominant poloidal mode number m = 1. This structure is seen to rotate twice around the

torus, as required by an n = 2 mode.

The instabilities computed here evolve on a fraction of the poloidal Alfv6n time, which is

almost a factor of 10 longer than the toroidal Alfv6n time. Purely explicit methods require

that the time step be taken at a fraction of the shortest time scale. In the example computed

here we have used the semi-implicit method with a time step 30 times larger than that

allowed by explicit numerical stability.

6.4.3. Resistive Instability in a Torus

The results presented in Sections 6.4.1 and 6.4.2 described ideal instabilities, i.e., unstable

normal modes of the ideal (infinitely conducting) MHD equations. However, some of the
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FIG. 35. Pressure contours in the poloidal plane at four different toroidal locations in the nonlinearly saturated

state of the Solov'ev equilibrium with tc = 1, q0 = 0.5, R/a = 3.
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FIG. 37. Pressure contours in the poloidal plane at four different toroidal locations in the nonlinearly saturated

state of the Solov'ev equilibrium with tc = 2, q0 = 0.5, R/a = 3.
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FIG. 39. The safety factor q (_) for the ITER equilibrium.

most important instabilities exist only in the presence of finite resistivity. As a result of

these modes the magnetic field configuration can change its topological properties, which

are otherwise invariant in ideal MHD. These resistive instabilities [30] have no counterpart

in ideal MHD and grow on a time scale that is a hybrid of the Alfv6n and resistive time

scales. The study of these modes has been a primary focus of resistive MHD computations

for over 20 years.

We have begun to apply TRIM to resistive instabilities in a torus. We have studied the

linear stability of a toroidal equilibrium whose stability properties are well known [31 ]. For

this case, the poloidal cross section of the plasma is circular and the q-profile is given by

1 + (r/ro) 8 ) 1/4
q(r) -- 2

1 -k-(rsz/ro) 8
(84)

where r is the minor radius (measured from the center of the circular poloidal cross

section), rs2 is the radius of the q = 2 surface, and r0 is the width of the current chan-

nel. We use rs2 = 0.7 and r0 = 0.6, which correspond to Run 1, Table 1 of Ref. [31]. The

particular equilibrium has been supplied in numerical form [32]. In Ref. [31 ], the Lundquist

number at the q = 2 surface was S = 2 x 10 4. For our initial calculations, in order to

save computer time, we have used an enhanced resistivity that gives S = 103 at the q - 2

surface.
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FIG. 40. Unstructured mesh for the ITER equilibrium.

We perturb the initial equilibrium with random noise and consider a linear case with

toroidal mode number n = 1. We find an exponentially growing instability with a growth

rate of YTap --" 0.0l (where TAp is the poloidal Alfv6n time). This is to be compared with

the result yTfap =0.017 of Ref. [31] with S = 2 x 10 4. The effect ofthis resistive instability

on the magnetic field topology is shown in Fig. 43, where we use the successive intersec-

tions of four different magnetic field lines with the poloidal plane (a Poincar6 plot). The

field line integration was performed with the code TUBE [33]. The magnetic islands that

characterize resistive instabilities correspond topologically to a poloidal mode number

m = 2, in agreement with Ref. [31 ].

7. SUMMARY AND DISCUSSION

An algorithm for the solution of the time-dependent, primitive, resistive MHD equations

in three-dimensional toroidal geometry has been developed. The algorithm uses an unstruc-

tured, triangular mesh in the poloidal plane and a structured, pseudospectral method based
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FIG. 41. Kinetic energy versus time for the n = 1 and n = 2 modes in the ITER equilibrium.

on FFTs in the toroidal coordinate. This allows axisymmetric configurations with arbitrarily

complex poloidal geometry to be accurately represented. Boundaries in the poloidal plane

need not correspond to flux surfaces or be constrained by coordinate systems. The algorithm

is fully conservative and maintains both the magnetic field and current density as solenoidal.

Fluxes at cell interfaces are computed with a low-order upwind method. The semi-implicit

method is used for time integration.

The algorithm has been applied to four nonlinear test problems: a hydrodynamic shock

tube; an MHD shock tube; supersonic flow past a sphere (both with and without an ini-

tial dipole magnetic field); and, growth and saturation of toroidal instabilities. For both

the hydrodynamic and MHD shock tube problems, good agreement with previous re-

sults has been obtained. The primary inaccuracy is due to the numerical diffusion in-

troduced by the low-order fluxes. Mesh adaption and refinement has been successfully

applied to both the hydrodynamic and MHD cases and to the case of supersonic flow

past a sphere. Linear growth and nonlinear saturation of three-dimensional kink modes

in two analytic equilibria and in a highly elongated toroidal equilibrium representative

of the ITER design have been computed. Time-step converged linear growth rates agree

with previous linear stability calculations to within 20%. The nonlinear evolution of these

modes has shown nonlinear mode coupling and spectral broadening and has demonstrated

the utility of the semi-implicit method of time integration for these calculations. The lin-

ear growth of a resistive tearing instability in toroidal geometry has also been calcula-
ted.

We briefly remark on the order of accuracy and efficiency of the algorithm. In Fig. 44

we plot the numerical damping rate inherent in the algorithm as a function of number of
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1 0 4

triangles. These results were obtained during the relaxation of the Solov'ev equilibrium,

as described in Section 6.4.1. We see that the numerical damping rate is approximately

linear in 3 _ (Aas)1/2, confirming the first-order nature of the algorithm. This damping is

consistent with the low growth rates found for these cases. The efficiency of the algorithm

is displayed in Fig. 45, where we plot the CPU time required to compute for one e-folding

time of a linear instability in the Solov'ev equilibrium as a function of At/AtcFL, the ratio

of the actual time step to the time step allowed by the explicit CFL condition. The behavior

illustrated here is influenced by two factors. First, as the time step is increased above

the CFL limit, the semi-implict coefficient, Eq. (72), becomes larger, and consequently

more iteration are required to invert the semi-implict operator. Second, the e-folding time

itself increases (the growth rate decreases) as the time step is increased (see Fig. 33).

The most efficiency (i.e., the minimum CPU time per e-folding time) is obtained at about

/k l//k tCFL = 10.

Several issues have arisen in the course of our investigation that we believe require further

research. These are enumerated below.

The first issue concerns the most efficient and accurate use of the primary and dual

meshes, and the placement of dependent variables on them. In this work we have used the

Delaunay triangles as the primary control volume and have chosen to define all volume

densities (momentum, mass, and energy) at their centroids. All physical boundaries consist

of triangle edges. We have not made use of the dual control volume elements consisting

of the polygons centered at triangle vertices with edges connecting triangle centroids. (The

edges of these polygons are used to define components of the magnetic field and cur-

rent density.) With the present scheme differential operators such as the gradient and the
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Laplacian acting on triangle-centered densities couple more than nearest neighbor triangles.

Our experience with rectangular, structured meshes [ 16] indicates that the use of staggered,

overlapping volume elements leads to the most compact, accurate, and physically motivated

algorithms. In those methods, the pressure and momentum are not collocated as they are

here, but are defined at the centers of the staggered primary and dual meshes, respectively.

We have not experienced any severe problems that can be directly attributed to the non-

compact formulation described in this paper, but the present algorithm seems to require

somewhat more artificial viscosity to assure robustly stable computations than methods that

use rectangular, structured meshes. Our initial attempts to formulate an exactly equivalent

method using triangles and polygons has led to problems in consistently defining boundary

edges and applying boundary conditions.

The second issue concerns interpolation. In the present algorithm, interpolation from

centroids to vertices, vertices to centroids, centroids to edges, edges to vertices, and vertices

to edges are all required. The form of the interpolation can affect the accuracy and stability

of the calculation. As described in Section 4.3, some of these interpolation schemes can

become quite complicated and can lead to coupling beyond nearest neighbors. We have

not devised a method for MHD using either rectangular or triangular meshes that does not

require some interpolation (or averaging) from one grid to another. Interpolation is required

during mesh refinement and coarsening. The number of interpolations per time step is also

affected by the choice of primary and dual meshes. The issues of accuracy and required

number of interpolations, and their affect on the performance of the algorithm, must be
better understood.
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The third issue concerns the criteria used for dynamic refinement and coarsening of the

mesh. In Section 2.7 we presented criteria for adding or deleting triangles that are based on

either the normalized average Laplacian operator or the normalized gradient. For the results

presented in Section 6, we have used these criteria in conjunction with the mass density.

Other criteria have been used in computational hydrodynamics [18]. Other problems may

require still other criteria. For example, criteria based on current density may be useful

for magnetic reconnection problems. The proper criteria for resistive MHD is yet to be
determined.

The fourth issue concerns the structure of the mesh itself. Delaunay triangles have many

desirable properties. The algorithm is most accurate for equilateral triangles, for then the

centroid dual mesh and the Voronoi dual mesh are equivalent. Deviations from equiangular-

ity introduce errors, and highly obtuse triangles can lead to spikes in high order derivatives,

such as current density. Mesh refinement can lead to large variations in triangle size and

shape over the mesh, even though the Delaunay triangulation maximizes equiangularity

in a global sense. These large variations can in turn affect the diagonal dominance of the

Laplacian operator and cause the conjugate gradient algorithm to fail to converge. What

is needed is a method for systematically redistributing the vertices in the poloidal plane

to assure that all triangles are at least acute and that variations in mesh size are smoothly

distributed in space. Clearly, more fundamental work needs to be done in this area.

We have used low order approximations for the calculation of interface fluxes. The

accurate computation of these fluxes has occupied the attention of computational

hydrodynamicists for several years, and it has proven to be a crucial issue in the accu-

rate engineering application of these methods. Improvements in these methods for MHD

must eventually be addressed.

Finally, we remark on the maximum Lundquist number (minimum dissipation) accessible

by the TRIM algorithm. As is the case with all nonlinear calculations, we have found

that, in the nonlinear regime, it is necessary to keep both the cell magnetic Reynolds'

number, RMA = v6/rl, and the cell viscous Reynolds' number, RA = v6/v, of order unity.

The Lundquist number is related to the cell magnetic Reynolds' number by S = (va/v)

(L/6) RM a. The maximum Lundquist number is therefore determined by both the particular

problem under consideration (through the flow velocity and the Alfv6n velocity) and by the

resolution (through the cell size 6, which is proportional to the square root of the number

of triangles). Thus, for a case with VA/V _ 10 and with 104 triangles (equivalent to a grid of

100 x 100 on a rectangular mesh), Smax "_" 103. This is consistent with our experience. For a

given problem, Smax can only be increased by decreasing the size of the triangles. However,

the scaling is not favorable: to increase Smax by a factor of 10 with uniform triangle size,

the number of triangles must be increased by a factor of 100 (_an order of magnitude for

each spatial dimension). This is not to say that accurate but limited calculations cannot be

performed at higher values of S. (See, for example, the ideal mode in the ITER equilibrium

described in Section 6.4.2.) Indeed, the linear growth and initial nonlinear saturation of

tearing modes in tokamaks can proceed for a time until the nonlinear coupling cascades

significant energy to the shortest length scale 6. All that is required is that the linear mode

structure near the resonant surface be well resolved, which can be accomplished by packing

grid cells there. However, if RMA > 1, this energy will eventually and inevitably build to

a level sufficient to render that calculation meaningless. This is the case for all nonlinear

algorithms, not just the one described here.
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ABSTRACT

Simulations of the nonlinear evolution of the m = 1 kink mode in magnetic flux tubes with line-tying
boundary conditions are presented. The initial structure of the flux tube is intended to model a solar

coronal loop that either has evolved quasi-statically through sequences of equilibria with increasing twist
due to the application of localized photospheric vortex flows or has emerged with a net current through
the photosphere. It is well known that when the twist exceeds a critical value that depends on its radial
profile and on the loop length, the loop becomes kink unstable. The nonlinear evolution of the insta-

bility is followed using a three-dimensional MHD code in cylindrical geometry, in different types of mag-
netic field configurations, with the common property that the current is confined within the same radius,
so that the magnetic field is potential in the external regions. The differences reside in the net axial

current carried by the structure, ranging from a vanishing current (corresponding to an outer axial
potential field) to a high current (corresponding to an outer almost azimuthal potential field). It is shown
that, during the nonlinear phase of the instability, loops develop current sheets and, consequently, their
evolution becomes resistive with the occurrence of magnetic reconnection. The dependence of the topol-
ogy of the currents at saturation on the initial magnetic structure, the details of the reconnection pheno-
menon, and the resistive dissipation mechanism are examined. Einally, the impact of the results ors theunderstanding of coronal activity is discussed.

Subject headinqs MHD Sun- corona- Sun-magnetic fields

1. INTRODUCTION

The existence of long-lived magnetic loop structures in
the solar corona has driven a great amount of work on the
linear stability of axially symmetric equilibria. The reason
for the stability of coronal current-carrying loops has been
recognized to be the effect of line-tying, i.e., the axial bound-
ary conditions due to the high-density photosphere• For a
given radial profile of the current density, there exists a

critical length above which the structure is magnetically
unstable (Raadu 1972; Hood & Priest 1979, 1981; Einaudi
& Van Hoven 1981, 1983; Velli, Einaudi, & Hood 1990a-
Foote & Craig 1990).

• Axially symmetric force-free equilibria may be divided
into two generic classes- equilibria that contain a non-

vanishing net axial current and that have a poloidal mag-
netic field which decreases as 1/r at large distances from the
loop axis, and equilibria for which the poloidal field van-
ishes at the edge of the current-carrying region, which there-

fore carry a zero net axial current. The latter type of
equilibrium is obtained when a magnetic structure, which is
initially close to potential, is energized by currents induced
via the magnetic field footpoint motions. Short correlation-

time motions produce a random energy input, while longer
correlation-time motions are capable of a quasi-coherent
energy input that may be stored in a stable fashion in a

1Now at Science Applications International Corporation, 10260
Campus Point Drive MS-C2, San Diego, CA 92121-1578.

84O

coronal loop, provided the loop is not too long (Mikid,
Schnack, & Van Hoven 1989, 1990). The typical loop gener-
ated in this way carries a net axial current that vanishes
beyond a radius comparable in dimension to that of the
region of random motions.

The former kind of equilibrium requires a closing current

to flow within the photosphere and may arise when a mag-
netic flux tube emerges from below the photosphere carry-
ing a net axial current; as the emergence proceeds the loop
becomes longer, reaching its critical stability length and
crossing this threshold.

In reality, the distinction between such cases is probably
not a strong one, as loops are continually excited by foot-
point motions as well as emerging in a nonpotential manner
from the photosphere• Nonetheless, we consider both caseshere.

In this paper we study the evolution of a coronal loop
when it becomes unstable, adopting different initial configu-
rations that are intended to model its structure at the end of
the energy buildup phase, which is not followed in time.

Therefore, we start the simulations by perturbing an equi-
librium at a chosen "distance" from marginal stability, as

we shall discuss in more detail below. Linear instability
results are fundamental in determining the thresholds for

the onset of dynamical behavior; the ideal linear eigen-

functions may also be used as initial perturbations in a fully
nonlinear simulation.

The paper is organized as follows. In § 2 we present the
physical model used, the equations solved, and the bound-
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particular, evolution of equilibrium NC, which maintains
its large-scale magnetic structure and evolves on the fastest

timescale, may provide a viable physical model for compact
loop flares. FC models, which produce weaker current
sheets and dissipate smaller amounts of energy, and evolve
on longer timescales, would be expected to contribute to

coronal heating, and may explain the long-lived hot loops
observed by Yohkoh.

In summary, line tying has two contrasting effects on the
behavior of coronal loops. For sufficiently short loops, it
acts as a stabilizing agent to prevent perturbations from
growing, allowing loops to build up and store magnetic
energy. Once the loops become unstable, line tying can
cause current sheets to form, resulting in an enhanced level
of energy dissipation compared to non-line-tied configu-
rations. It would be worthwhile to extend the calculations

presented here to include a more realistic description of the
thermodynamics, and to include the effect of toroidal curva-

ture, which may cause a rapid outward expansion of loops
as they are twisted (Amari et al. 1996).
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of the very rapid increase of growth rate as marginality is
crossed.

4. NONLINEAR RESULTS

We have performed three simulations to study the non-
linear evolution of kink instabilities that develop in the FC
and NC fields. The MHD equations (1)-(4) are advanced
numerically in time by means of a three-dimensional semi-
implicit algorithm, which makes use of a Fourier expansion
in the poloidal direction and of a finite-difference technique
in the axial and radial directions. We define a radial mesh

extending between r - 0 and r - R, where we set a conduct-
ing boundary. Since we expect to find current concentra-
tions in the vicinity of the center of the cylinder, the mesh is
designed as in Miki6 et al. (1990), with greater resolution for
small r's and increasingly sparser at greater radii" 13% of
the points are within r- 0.05R, 26% are within r- 0.1R,
55% are within r- 0.25R, and 82% are within r- 0.5R.
The ratio of the largest Ar to the smallest is 13.9. R must be

large enough to avoid artificial stabilizing effects on the
evolution of the system. We choose R- 20 for the FC
fields, which develop global kink modes, and R- 12.5 for
the NC equilibrium, in which the internal kink mode is
effectively confined by the outer constant axial field. The
axial and poloidal meshes are taken to be uniform in both
cases. A 63 x 63 x 32r z 0 mesh is employed. We use a
dealiased Fast Fourier Transform algorithm, so that only
modes with 0 < m < 10 are retained (equivalent to 2 of
available Fourier space). The inversion of self-adjoint
matrices, generated by the semi-implicit formulation and by
the fully implicit treatment of the viscous and resistive
terms, is accomplished through a conjugate gradient solver
with diagonal preconditioning. The details of the code are
described elsewhere (Lionello, Miki6, & Schnack 1998). The
initial conditions assume constant mass density, p - 1, con-
stant temperature, a plasma beta/3 - 0.01, which is typical
of the solar corona and an m - 1 perturbation of amplitude
v _ 6 x 10 -4 is applied to the three equilibria described
above. In order to save computing time the radial and axial
profiles of the initial perturbation are derived from the
linear code.

The computation is started with no resistivity and with a
small value of the viscosity, v _ 10 3, to be able to follow
the entire ideal linear phase of the instability. We find that
in all three cases during the first stage of the nonlinear ideal
evolution small scales are created in all three directions and

eventually resistivity must be introduced in the computation
in order to dissipate the energy which accumulates at small
scales and to avoid the development of numerical insta-
bilities (Einaudi et al. 1997). Therefore after a time T_, whose
value depends on the equilibrium under investigation, the
resistive terms are turned on with r/- 10 -2 (T r - 195, 160,
and 115, respectively, for FC1, FC2, and NC), and at the
same time the viscosity is set to the same value. Such a value
is necessary to describe the behavior of small scales in our

moderate resolution simulations properly. Resistivity is
actually important only locally where small scales are
created by the nonlinear dynamics. Attempts to link the
inclusion of resistivity to the magnitude of the currents (to
avoid the diffusion of the large-scale structures) in our code
were unsuccessful, probably because of the implicit treat-
ment of the dissipative terms.

Once resistivity is turned on, the instability eventually
saturates in a timescale that appears to be independent of

the equilibrium adopted even though the linear timescales
are different. Such a behavior is well described by the time
history of the magnetic and kinetic energies contained in the
different poloidal modes, which is shown in Figure 6 (note
the cusps in the profiles at the time when resistivity is turned
on).

In all runs an m- 0 transient mode shows up in the
kinetic energy history, which is due to adaptation of the
analytical equilibria to the grid. We have derived the
approximate growth rate of the m- 1 mode in the three
cases, finding a satisfactory agreement with the growth rates
obtained using the linear code presented in Figure 3. From
Figure 6 it is also clear that the growth of the higher m
modes is due to forcing from the m - 1 mode via quadratic
nonlinear terms, since, e.g., the m - 2 mode, once the m - 1
mode is well into the exponential growth phase, also
exhibits exponential growth with a rate that is twice as large
as that of the m - 1.

In order to investigate the distribution of the currents in
the loop and to better understand the physical meaning of
the creation of small scales, we have computed the modulus
of the current density at different heights for the three equi-
libria at the beginning of the resistive phase, and we present
the results for z- 0 and z- 2L in Figure 7. It is evident
that the introduction of the resistivity is necessary to cor-
rectly describe the evolution of current peaks that have been
formed during the ideal nonlinear evolution. The overall

topology of the current structure differs considerably from
one equilibrium to the other, reflecting the different physical
nature of the current concentration. We have already
described how for model FC1 the kink extends far into the

regions of the original potential field and the current dis-
tribution does not show any strong concentration in the
linear phase. In the nonlinear phase two current peaks
develop, one per each half loop, the location of the peaks
depending on the total length of the loop. This fact can be
seen comparing the results for FC1 with the results present-
ed in Velli et al. (1996) for their model a, which has the same
radial structure as FC1 and length L- 25. The current
concentrations at z - 0 are just the "tips" of the two layers
developed in the legs of the loop. The formation of such
current layers is a direct consequence of the fact that the
magnetic lines cannot move at photospheric levels produc-
ing strong gradients where the kink folds on itself in each
leg of the loop.

The presence of "resonant" regions in the linear phase
can be another possible cause for the formation of current
concentrations in the subsequent nonlinear phase. In a
"resonant" region the ideal terms determining the time
evolution of the radial component of the perturbed mag-
netic field go through zero, generating a current concentra-
tion within the region. For both FC2 and NC models the
"resonant" region is located at the loop apex and current
sheets develop there. The difference between the two models
is that in the NC case only the internal part of the plasma
column moves outward, piling up magnetic energy at the
border with the potential region and contributing to the
local enhancement of the current. In the FC2 case the radial

displacement is more extended and therefore the resonant

region is carried by the flows outward with a smaller oppo-
sition of the potential field.

In all cases current layers are formed and the evolution
becomes resistive with a consequent occurrence of magnetic
reconnection (see also Baty & Heyvaerts 1996).



!!!!!iljSii!i_i!J!!GilJ_iiii!!!!iiiii_:_i_ii%iiiii:i_'_i_ii_i!'i?Si!!ii!!/i_iiii_!!!i_ii_!_ii!!i_!ii'i'_'ii?!!ilii__i'_ii_!,L'_ili_ii_i:?_I_LI;i_i!_i__i_!ii_i_:_i_IIII!!I!IL_I_iii!!_i_iiiiii_'i__511111!_iii?,i_!!_i!i!_!i_,̧i!i!_!i!_!!il!iiii!'i_!!iiiii_!_Li_iiii_i!ii_!_i_!!!ii_/_i!i!_i_!ili_iiSii'_!_II!'_:_I!"!L!_,_!ii_i_i!!_'i_iii_!!iiiiiii!i_i!iiii!ili!i_i!i!/ii!!i_ili_i_i'!_ii!iiii!ii!_i_5_ili/!__ii!i!_ii_!_iii!ii_i!_ii!!iiiiii!i!i!!!!iiii_iiiiii!i!!!!_iiii!i_iiiii!i_!i!_!iii_!!iiiii?_iiiili!_!iii!_ii_i_i_iii_ii,!_!i!!i_ii_i!il!i!ii_!iiii!!_.i_:iiii!ii!!_!i!iiiiii_ililiiiiii_!iiiiiiii!iiii_iiiii!!iiiiii!!!!i!!ii!i!iii!ii!!ii!iiiii!iiiiiiiiiiiii_iliii!i!!!!iiiiliif!!iiiii!!iiiiiiiiii!i!ii!!iiiiiiiiiiiiiiiiiiiiilii_iii_iiiiiiiiiiii!_iiiiiiiii!iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii_iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii!iiiiiiiiiiiiiiiiiliiiiiiiiiiiiiiiiiiiiiiii_iiiii__iiiiiiiiii__iiiii_i_iiiiiiiiiiiiiiiiiiiiiiiiiiii_iiiiiii_i_iiiiiii_iiiJi_iii_iiiiiiiiiiiii_i_i_iiiii!iii_i

846 LIONELLOET AL. Vol.494

2

104 _ ......................................
102

100

lO -2

_°- _ ........._ ._,>_

10 -6 .

10-8_10 -10 ......

o lOO 200 soo

Time

2
v

102

100

10 -2

1O- 6 ...... _::._

ilo-lO

10 -12 .....

400 0 100 200 300 400
Time

b2

104102i ................
100 ..............................._YI--- '

10 -2 ,.,.._

10-4
106

0 100 200 300 400

Time

V 2

102100 ........":::=":--= __'"_....

...." _, .,,'/',_I........
10- 4 , .,._,_

10 -6

10 -8

10-10

lO- _2 ._Z

0 100 200 300 400

Time

104

10 2

i0 0

-210
-4

10
-6i0
-8

I0
-10I0

0

2

.......................................... i

..._..................2.-- .-Z_ _.-.;._:--

50 100 150 200

Time

V 2

102
..........

lO 0

i

_o 4 ;._

_ _ • .,i, t. / /

10-6 ,,; •._._.L
10 -8

10-10

10 -12 _ "

0 50 I00 150 200

Time

FIG. 6.--Poloidal mode histories of the magnetic and kinetic energy for equilibria FC1 (top panel), FC2 (middle panel), and NC (bottom panel)

In Figures 8 and 9 we present field line plots for the FC
and NC models at the beginning of the resistive phase and
at saturation of the instability when all poloidal modes start
declining. The lines start from the bottom of the loop at
different radii (r = 2, 4) and angles, in the region where the
current flows, and are integrated until they reach the top.
This choice of field line imaging makes the representation
asymmetrical, though clearly a perfectly symmetrical image
would appear if we plotted also the corresponding field lines
originating from the top of the loop. The axial dimensions
of the structures are proportional to the real lengths of the
loops. Each magnetic line connects two fluid elements that
are rooted in the photosphere at opposite sides of the loop.
During the ideal phase the field line can only be bent and
twisted since the fluid elements in the photosphere cannot
move. In the resistive phase the field lines can reconnect,

altering the field topology and therefore the connectivity
between fluid elements in the photosphere.

The fact that reconnection has occurred during the
resistive nonlinear evolution of all three models is evident

from a comparison of left and right panels in Figures 8 and
9. Following the previous discussion on the properties of
the dynamics of the three models, it is not surprising to
notice that the final magnetic topologies of the three models
differ considerably even if the physical mechanism deter-
mining the evolution is the same in all cases. This is due to
the fact that the current layers resulting from the ideal non-
linear evolution are located in different regions of the loop.

Reconnection starts influencing those magnetic lines that go
through the current layer and therefore changes the connec-
tivity of those fluid elements at the photosphere where such
lines originate. Away from the current layer the lines are
frozen and move with the local velocity of the fluid.

In the case of model FC1 magnetic lines are affected by
reconnection in both legs of the loop and the kink progres-
sively involves field lines at greater and greater distances
from the axis of the loop. As a result lines with an originally
small amount of twist are connected with lines originally in
the potential region of the loop with a much greater twist
and eventually the original magnetic field topology is com-
pletely destroyed, leading to what appears to be an ergodic
field. We have not checked whether there are field lines that

are actually space filling, or field lines that are totally dis-
connected from the photosphere, but an indication may be
given by the behavior of the function a = j. BIB 2, which is

a constant along field lines. Initially, this quantity is non-
vanishing only within the current channel and monotoni-
cally decreasing outward (it does not depend on z). At
saturation, this function appears to develop a plateau over
the full extent of the perturbed region. At the same time, the
field lines are clearly not the laminar constant a force-free
field.

Models FC2 and NC develop a current layer at the loop
apex and suffer a less extended kink instability. In the NC
case the kink is totally confined within the current channel
and the original potential field contains no twist. For model
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Solankietal.(1993).Accordingto Hagyardetal.(1983)and
others,theobservedverticalfieldgradientrangesfrom0.2
Gkm 1to severalG km 1 (for reference see Balthasar &

Schmidt 1993). Hagyard et al. (1983) suggest 0.2 G km 1,
while Balthasar & Schmidt (1993) suggest 2 3 G km 1 and
Pahlke & Wiehr (1990), 2 G km-1. Balthasar & Schmidt

(1993) obtained the nearly independent vertical field gra-
dient on location within a sunspot. In the present study, we
have considered four different cases:dBz/dZ- 0 G km-1,
0.5 G km-1, 1 G km-1, and 2 G km 1. By virtue of equa-

tions (9) and (11), the longitudinal field configuration refer-
enced to a common geometrical depth (Z- ZD) can be

obtained by

Bz(R, ZD)- Bz(_) + AZ(_)(dBz/dZ) . (12)

Here we express our new shape function as

D(_)-D(0)exp( a n)--,D(0)exp [ (_pR/Rp) n], (13)

where n and c_, are free parameters that will be chosen to fit
D(e)/D(O) to the derived Bz(R, ZD)/Bz(O, Zo) through
equation (2). The old shape function is a Gaussian (n- 2)

with C_p- 1.63, which was inferred from the longitudinal
field configuration referenced to optical depth. Since we
have converted the magnetic field distribution referenced to

optical depth to one referenced to geometrical depth, we
have to derive new shape functions that will conform to the

new prescription. For this work we generalize the shape
function to that given by equation (13). This corresponds to
an improvement of the upper boundary condition of Yun's

sunspot models.
A set of the two numerical parameters n and c_phas been

determined by means of nonlinear least-squares fitting for
each of the four different cases considered above. The

resulting values are tabulated in the third and fourth
columns of Table 1. In the table we may note that case 1
(zero field gradient) is very similar to the old one chosen by
Yun (1968). The total flux • and the parameter f conform-
ing to the newly derived shape function have been estimated
by numerically solving equations (3) and (5). We define A
and C as A -liD(O) and C - d#/zcD(O) and list the resulting
values of A and C for the four cases in Table 1. Finally, the

radial component of the field BR(R, ZD) is computed from

BR(R, ZD) = aD(a)(d_/dZ)z_

= exp [--(aR/Rp)"](tan Op)(a/ap).

2.3. Boundary Condition

The upper boundary condition is a free parameter, which
can be specified by the inclination angle O p at the outer edge
of the penumbra at a given geometrical depth ZD. The

upper boundary condition is given by

yZ(ZD) tan Op (15)
y'(ZD)- [D(0)]x/2 ap ,

where Zo is taken as the depth of •- 2 at the sunspot

center and O, is the angle of inclination of a line of force
passing through the outer edge of the penumbra at the
geometric depth ZD. The value of Op here should be smaller
than the observed angle of inclination at the outer edge of
the penumbra. However, Yun (1970) neglected the Wilson
effect and made use of values based on the observations.

The 0pmax in Table 1 is the upper limit of Op, below which
no off-centered local maximum of the total field strength is

found. For all cases, the values of I]/pmax are smaller than the
observed inclination angle Oobs(0).

3. RESULT AND DISCUSSION

With the new shape functions derived in the previous
section (see Table 1), four sets of magnetostatic sunspot

models with Tspot- 4000 K and 4400 K have been con-
structed, in each of which Op is varied to fit the observ-
ations. In Figure 2, the field strengths at the spot axis

computed for three values of Op are compared with the
observed ones (solid line) determined by the empirical rela-
tion (eq. [6]). As can be seen from the figure, the computed
field strengths match well the observed one for a particular

Op, which is named as the most desirable one. We tabulate
the most desirable Op in Table 1 for comparison with the
upper limit angle 0pmax" AS can be seen in Table 1, the most
desirable ones of all cases, except for case 1 (zero field

gradient), do not exceed the upper limit 0pmax, beyond
which the off-centered maximum field strength begins to
show up. It implies that the shortcomings of Yun's model
do not appear in the computed models since the upper
boundary condition is different from that of Yun (1970) by
taking into account the Wilson effect. In addition, the deter-

mination of the most desirable value of Op for a assumed
field gradient results in the models that are essentially char-
acterized only by the effective temperature Tspot at the spot
axis. This makes it possible to investigate the dependence of
the physical characteristics of model spots on Tspot and/or
on the spot size. The physical characteristics of the com-
puted model sunspots are summarized in Table 2, which are
specified by the most desirable Op - 50 °, 63 °, 67 °, 71 °, and

Tspot- 4000 K, 4400 K, respectively. As can be seen in
Table 2, thermodynamic parameters Pg and p depend only
on the thermal structures of model spots.

So far, the vertical field gradient has been assumed to be

independent of the position within a sunspot. In order to
examine the radial dependence effect of the magnetic field

TABLE 1

MODEL PARAMETERS ESTIMATED FOR DLFFERENT VERTICAL FIELD GRADIENTS

Model

P

dBz/dZ 0pmax (ZD)

(G km- _) n ap A C (deg) (deg)

Yun ........ 0 2.00 1.63 0.50 1.00 66.5
Case 1 ...... 0 1.86 1.63 0.49 1.03 69.1 7"1

Case 2 ...... 0.50 1.65 1.43 0.48 1.11 68.7 67

Case 3 ...... 1.00 1.49 1.22 0.47 1.19 66.8 63

Case 4 ...... 2.00 1.24 0.81 0.47 1.44 58.6 50

Case 5 ...... -0.5a + 1 1.70 1.39 0.48 1.09 67.6 67

Oobs

(o)
(deg)

72

72

72

72
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gradient, we have taken a case characterized by

dBz/dZ = - 0.5a + 1 G km- 1 , (16)

where we assumed that the vertical field gradient decreases

with the radial distance from the spot center. With a new

shape function obtained from the field configuration char-

acterized by equation (16), we have calculated the sunspot

models by the same method as in the above four cases and

included the results in the last rows of Tables 1 and 2. As

seen from the tables, the physical characteristics of the com-

puted models in case 5 are nearly similar to those of case 2,

where the vertical field gradient was taken as 0.5 G km-1.

This implies that Cv depends critically on the vertical gra-

dient near the outer part of the penumbra.

Figure 3 shows the field distribution of the radial, verti-

cal, and total magnetic field strengths at the depth of Ze

calculated by using new shape functions and equation (14)

for four different field gradients (0.5, 1, 2, -0.5e + 1 G

km-_). Since the inclination angle of case 4 ( Fig. 3c)

changes too much from 50 ° at ZD to 72 ° at Z = 0, it could

not be compatible with the observation of deep sunspot

penumbra (Solanki & Schmidt 1993). Among the con-

TABLE 2

PHYSICAL CHARACTERISTICS AT THE CENTER OF MODEL SUNSPOTS AT THE SURFACE Z D

Model
T 0. • B Pg p (dB/dZ)c

(K) (deg) (Mx) (G) (dynes cm -2) (g cm -3) (G km-')

Case 1 ......

Case 2 ......

Case 3 ......

Case 4 ......

Case 5 ......

4000 71 2.4E22 3337 1.99E5 7.86E-- 7 0.79
4400 71 5.6E21 2720 1.73E5 6.22E-- 7 1.20
4000 67 2.4E22 3406 1.99E5 7.86E- 7 0.79
4400 67 5.6E21 2774 1.73E5 6.22E-- 7 1.20
4000 63 2.4E22 3387 1.99E5 7.86E- 7 0.79
4400 63 5.6E21 2759 1.73E5 6.22E-- 7 1.20
4000 50 2.4E22 3377 1.99E5 7.86E- 7 0.79
4400 50 5.6E21 2759 1.73E5 6.22E-- 7 1.20
4000 67 2.4E22 3374 1.99E5 7.86E- 7 0.79
4400 67 5.6E21 2748 1.73E5 6.22E-- 7 1.20

Rp

(z.)
(arcsec)

33.5
17.9
28.0
15.0
23.2
12.4
14.0

7.5
27.6
14.8



No. 2, 1998 SCHLUTER-TEMESVARY SELF-SIMILAR SUNSPOT MODELS

1.0

0.8

0.6

0.4

0.2

/
/

/
/

/
/

/
/

/
/

7

.....i
,, BR_

\, .....,&,
\ ".q

B Z x.\...
..

........

\
....

>.
\...

.0 . . , i , , , i , , , i , , , i , , ,

O0 0.2 0.4 06 08 1.0

R/R_

1.0

0.8

0.6

0.4

0.2

0.0

• i , , , !

...
_. .....

/ Z .........
/ -,

// "":,,,, ....

/
/

/
/

/
/

0.0 0.2 0.4 0.6 0.8 1.0

R/R_

855

1.0

0.8

0.6

0.4

0.2

0.0

__,' • i , • • ! • • • ! • • • ! • • •

"-... _____

............."............B_ _
\,

._,

'-,.

:):,,..__-----

...

..,

J, i , , , i , , , i , , , i , , ,

1.0

0.8

0.6

0.4

0.2

0.0

-"_I:L.:°_ I " " " I " " " I " ' '

/ , ""N

/ "

// ...............Bz
''.,......

/ ............
/ -.

/ ......\ ....

.......-4

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

R/R_ R/R_

FIG. 3.--Magnetic field configuration characterized by new shape functions and the most desirable Op (see Table 1). The most desirable _, was determined
by comparing the computed field strengths with the observed ones. dBz/dZ = (a) 0.5 G km- 1, (b) 1 G km- 1, (c) 2 G km- 1, and (d) -0.5e + 1 G km- 1

sidered models, cases 3 and 5 seem to be the most self-
consistent model in the sense that the resulting (dB/dZ)c
(0.8-1.2 G km-1) comes out closer to the assumed vertical ,_

field gradient of 1 G km-1. Considering the recent obser- __
vation by Bruls et al. (1995), who found that the vertical
gradient of magnetic fields in the penumbra slowly declines ,m_
as a function of radial distance, we suggest that case 5

Oshould be a most reasonable one. It is noted that the com-
,P=_t

puted d_/dZ ranges from 0701 km-1 to 0?03 km-1 at the
outer edge of the penumbra, which falls within the range ©
suggested by Solanki et al. (1993). ;*

Finally, we note that in our model the amount of the ©
Wilson depression appears to have a linear relationship

with Tspot/Tph and Tspot/Tph can be related to R,, a directly
observable quantity with the use of equations (6) and (7). In ©
Figure 4 we plot the Wilson depression calculated from

models as a function of R, to get their linear relationship as

WD(km) = 26.4R,[arcsec] + 356.2 (17)

for R, > 7". We suggest this model-predicted relation could
be tested by high-resolution observation in the future. The
amount of the Wilson depression we presented in Figure 4
lies within the range of those suggested by Solanki et al.
(1993) and Gokhale & Zwaan (1972).

The self-similarity assumption by ST58 is adopted in our
study to make the problem mathematically tractable. There
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FIG. 4.--Computed Wilson depression as a function of the umbral size.

Crosses are the computed values, and the solid line is their linear regres-
sion.
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is no known physical reason for the sunspot field configu-
ration to be self-similar. However, we can at least assert that

the self-similarity, if any, can hold only in the region of high
plasma/_, where the plasma pressure can confine the mag-
netic field. So far no direct measurement of the sub-

photospheric field configuration has been made. Lee et al.
(1993) investigated the radial magnetic field structure of a
single isolated sunspot at the coronal base using microwave
spectroscopy. They showed that the radial field distribution,
at least inside the inner penumbra, has a Gaussian form and
is very similar to that in the photosphere. If the field con-
figuration is more or less self-similar even above the photo-
sphere, we may expect that it would be more so in the
subphotospheric region.

In the present study, we have not made a closer exami-
nation of the optical properties of the models. A continuum
radiative transfer analysis of the emergent flux at various
center-to-limb angles would give us a more definitive under-
standing of the Wilson effect. However, it is beyond the
scope of this paper and is reserved for future studies.

The sunspot models in this study are constructed under
the assumption of the azimuthal symmetry. Title et al.
(1993) found from their high-resolution observations at the
Swedish Solar Observatory in La Palma that the inclina-
tion angle of the magnetic field in the penumbra of sunspots
oscillates rapidly with azimuth. In relation to this, Martens
et al. (1996) presented a constant-e force-free model for the

magnetic field in fluted sunspots. Our symmetric models do
not accommodate any azimuthal variations, but are mainly
concerned with the mean-field structure of isolated sun-

spots, especially in the high-/_ region in and below the
photosphere.

4. SUMMARY AND CONCLUSION

In the present study, we have revisited Yun's sunspot
models by taking into account the effect of the Wilson
depression. For this purpose, we represented the observed
field distribution of sunspots with the Skumanich dipole
model and converted it to one referenced to a common

geometric depth. In converting the Skumanich dipole
model to the geometrically referenced one, we have made
use of the radial dependence of the Wilson depression sug-
gested by Solanki et al. (1993). With the use of the Wilson
depression of Solanki et al. (1993) along with five different
vertical gradients (0, 0.5, 1.0, 2.0, and -0.5e + 1 G km- 1), a
set of new shape functions has been derived by fitting them
to the geometrically referenced longitudinal field distribu-
tions. The shape functions are assumed to be represented by
D(_) = D(0) exp (-0d). To reduce the number of free param-
eters in the model computations, we have utilized a recent

empirical relation between maximum field strength and
effective temperature of spots given by Kopp & Rabin
(1992), together with the relation between the field strength
and the umbral size suggested by Kopp & Rabin (1992) and
Martinez Pillet & Vfizquez (1993). With the new shape func-
tions conforming to geometrically referenced field configu-
rations characterized by the five different vertical field
gradients, five sets of magnetostatic sunspot models have

been computed by varying _p.
The main result in this study is summarized as follows:

1. The computed models for a given field gradient can be

characterized only by Tspot , the effective temperature at the

center of spots. The most desirable values of Op, the upper
boundary condition, for the five different cases were deter-
mined by comparing the computed maximum surface field
strengths with the observed ones.

2. Especially, the computed models do not have the
shortcoming raised by Osherovich (1982), demonstrating
that the shortcoming is not inherent to the self-similar
models. The similarity assumption would break down in the
higher solar atmosphere due to the surrounding weak gas
pressure as commented by Steiner, Pneuman, & Stenflo
(1986) and Pneuman, Solanki, & Stenflo (1986).

3. The resulting sunspot models support the observed
empirical relations given by Kopp & Rabin (1992) and
Martinez Pillet & Vfizquez (1993).

4. The computed d_p/dZ ranges from 0701 to 0.°03 km 1
at the outer edge of the penumbra, which falls within the
range suggested by Solanki et al. (1993).

5. The present study supports the self-similarity for the
lateral magnetic vector structure of fairly isolated sunspots
found by Keppens & Martinez Pillet (1996).

We presented in Table 2 the physical characteristics of T,

Op, _, B, Po, P, (dB/dZ)c, and ep(ZD) expected in each
model. It is concluded that when the Wilson depression is
properly taken into account, the similarity field configu-
ration represents quite well the structure of sub-
photospheric sunspots.

We wish to thank A. Skumanich, J. W. Lee, and G. S.

Choe for reading the manuscript and providing valuable
comments. We also appreciate the anonymous referee's
helpful comments for improving the present paper. The

present work is in part supported by the Basic Research
Institute Program, Ministry of Education, Republic of
Korea, 1996 (BSRI-96-5408) and in part by the Korea-
China Cooperative Science Program, under grant (966-
0203-005-2). Y.-J. Moon is very thankful for support of
KAO (Korea Astronomy Observatory) Research Fund.

REFERENCES

Adam, M. G. 1990,Sol. Phys., 125,137
Balthasar, H., & Schmidt, W. 1993,A&A, 279, 243
Bruls, J. H. M. J., Solanki, S. K., Rutten, R. J., & Carlsson, M. 1995,A&A,

293,225
Deinzer, W. 1965,ApJ, 141,548
Ffft,T., Osherovich, V. A., & Skumanich, A. 1982,ApJ, 261,700
Gokhale, M., & Zwaan, C. 1972,Sol. Phys., 26, 52
Hagyard, M. J., et al. 1983, Sol. Phys., 84, 13
Keppens, R., & Martinez Pillet, V. 1996,A&A, 270, 494
Kopp, G., & Rabin, D. 1992,Sol. Phys., 141,253
Lee, J. W., Gary, D. E., Hurford, G. J., & Zirin, H. 1993, in ASP Conf. Ser.

46, The Magnetic and Velocity Fields of Solar Active Regions, ed.
H. Zirin, G. Ai,& H. Wang (San Francisco: ASP), 287

Lites, B. W., Elmore, D. F., Seagraves, P., & Skumanich, A. 1993,ApJ, 418,
928

Martens, P. C. H., Hulburt, N. E., Title, A. M., & Acton, L. W. 1996,ApJ,
463, 372

Martinez Pillet, V., & Vfizquez, M. 1993,A&A, 270,494
Osherovich, V. A. 1982, Sol. Phys., 77,63
Osherovich, V. A., & Garcia, H. A. 1989,ApJ, 336,468
Pahlke, K. D., & Wiehr, E. 1990, A&A, 238, 246
Pneuman, G. W., Solanki, S. K., & Stenflo, J. O. 1986,A&A, 154,231
Schliiter, A., & Temesvary, S. 1958, in IAU Symp. 6, Electromagnetic

Phenomena in Cosmical Physics (Cambridge: Cambridge Univ. Press),
263 (ST58)

Skumanich, A. 1992a, in Sunspots, ed. J. H. Thomas & N. O. Weiss
(Dordrecht: Kluwer), 121

Skumanich, A. 1992b, in Surface Inhomogeneities on Late Type Stars, ed.
P. B. Byrne & D. J. Mullan (Berlin: Springer), 90

Solanki, S.K., Ruedi, I., & Livingston, W. 1992,A&A, 263, 339





REPORT DOCUMENTATION PAGE FormApproved
OMB No. 0 704-0188

Public rel:x_ing bun:fen for th_s collection of mformabon ts esbn'_ted to ilver'4ge I hour per response, 0nc_uding the time for rev_wmg in_4ructions, S_lin:_ ex_tlng diltll sources, glt_
lln_ rnillntilJnlng tl_ dil_ll needed, and completing and rew_ng _e collection of infotmatiOt_. Send comn'_nt_ regarUing this burden e_4imltl ot Imy oO't_ ilSpec_ of this coillction of
information, including suggestions for reduong this burden, to Washington Headquarters Services, D_rectorate for Information Ogeratior_ and Recx:_l. 1215 Jelfenmn Devil Higllway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Prolect (0704-0188), Washington. DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

June 19, 1998

3. REPORT TYPE AND DATES COVERED

Interim for 7/16/97 - 6/15/98

4. TITLE AND SUBTITLE The Structure and Dynamics of the
Solar Corona - NASA Space Physics Theory Contract

NAS5-96081 - Second Year Progress Report

6. AUTHORS

Zoran Mikic

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Science Applications International Corporation

Mail Stop C2

10260 Campus Point Drive

San Diego, CA 92121-1578

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics & Space Administration

Goddard Space Flight Center

Greenbelt, MD 20771

5. FUNDING NUMBERS

C-NAS5-96081

PR-0 I-0157-07- 7650-000

8. PERFORMING ORGANIZATION
REPORT NUMBER

SAIC-98 / 1032" APPAT-203

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This report details progress during the second year of

Space Physics Theory contract.

funding for our

14. SUBJECT TERMS
solar corona

magnet ohydrodynamic s

numerical simulation

active regions

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLAS S IFI ED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

16

16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Computer Generated STANDARD FORM 298 (Rev 2-89)
Prescribed by ANSI Std 239-18
298-102


